{"title":"长颈鹿的心血管疾病。","authors":"Christian Aalkjær, Tobias Wang","doi":"10.1007/s10974-022-09626-0","DOIUrl":null,"url":null,"abstract":"<p><p>Giraffes are the highest living animals on Earth and therefore are challenged by gravity more than any other species. In particular the cardiovascular system needs to adapt to this challenge. Giraffes have a mean blood pressure around 200 mmHg, which ensures a mean arterial pressure near the head of 100 mmHg when the giraffe is standing with the neck in a near vertical position. This immediately raises several questions. How do giraffes avoid edema in the legs where the arterial pressure is 300 mmHg or higher? How does the heart produce a pressure of 200 mmHg, and what is the energy required for this endeavor? How can the kidney tolerate a pressure of about 200 mmHg and does this mean that giraffes have a high glomerular filtration rate? What is the arterial pressure in the head of giraffes when they drink, and how is perfusion of the brain maintained when they lift their head after drinking? In this short review, we present some answers to these questions.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":"44 2","pages":"53-60"},"PeriodicalIF":1.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The cardiovascular challenges in giraffes.\",\"authors\":\"Christian Aalkjær, Tobias Wang\",\"doi\":\"10.1007/s10974-022-09626-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Giraffes are the highest living animals on Earth and therefore are challenged by gravity more than any other species. In particular the cardiovascular system needs to adapt to this challenge. Giraffes have a mean blood pressure around 200 mmHg, which ensures a mean arterial pressure near the head of 100 mmHg when the giraffe is standing with the neck in a near vertical position. This immediately raises several questions. How do giraffes avoid edema in the legs where the arterial pressure is 300 mmHg or higher? How does the heart produce a pressure of 200 mmHg, and what is the energy required for this endeavor? How can the kidney tolerate a pressure of about 200 mmHg and does this mean that giraffes have a high glomerular filtration rate? What is the arterial pressure in the head of giraffes when they drink, and how is perfusion of the brain maintained when they lift their head after drinking? In this short review, we present some answers to these questions.</p>\",\"PeriodicalId\":16422,\"journal\":{\"name\":\"Journal of Muscle Research and Cell Motility\",\"volume\":\"44 2\",\"pages\":\"53-60\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Muscle Research and Cell Motility\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10974-022-09626-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Muscle Research and Cell Motility","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10974-022-09626-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Giraffes are the highest living animals on Earth and therefore are challenged by gravity more than any other species. In particular the cardiovascular system needs to adapt to this challenge. Giraffes have a mean blood pressure around 200 mmHg, which ensures a mean arterial pressure near the head of 100 mmHg when the giraffe is standing with the neck in a near vertical position. This immediately raises several questions. How do giraffes avoid edema in the legs where the arterial pressure is 300 mmHg or higher? How does the heart produce a pressure of 200 mmHg, and what is the energy required for this endeavor? How can the kidney tolerate a pressure of about 200 mmHg and does this mean that giraffes have a high glomerular filtration rate? What is the arterial pressure in the head of giraffes when they drink, and how is perfusion of the brain maintained when they lift their head after drinking? In this short review, we present some answers to these questions.
期刊介绍:
The Journal of Muscle Research and Cell Motility has as its main aim the publication of original research which bears on either the excitation and contraction of muscle, the analysis of any one of the processes involved therein, the processes underlying contractility and motility of animal and plant cells, the toxicology and pharmacology related to contractility, or the formation, dynamics and turnover of contractile structures in muscle and non-muscle cells. Studies describing the impact of pathogenic mutations in genes encoding components of contractile structures in humans or animals are welcome, provided they offer mechanistic insight into the disease process or the underlying gene function. The policy of the Journal is to encourage any form of novel practical study whatever its specialist interest, as long as it falls within this broad field. Theoretical essays are welcome provided that they are concise and suggest practical ways in which they may be tested. Manuscripts reporting new mutations in known disease genes without validation and mechanistic insight will not be considered. It is the policy of the journal that cells lines, hybridomas and DNA clones should be made available by the developers to any qualified investigator. Submission of a manuscript for publication constitutes an agreement of the authors to abide by this principle.