尹扬:跨领域多加速程序设计摘要。

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
IEEE Micro Pub Date : 2022-09-01 Epub Date: 2022-08-01 DOI:10.1109/mm.2022.3189416
Joon Kyung Kim, Byung Hoon Ahn, Sean Kinzer, Soroush Ghodrati, Rohan Mahapatra, Brahmendra Yatham, Shu-Ting Wang, Dohee Kim, Parisa Sarikhani, Babak Mahmoudi, Divya Mahajan, Jongse Park, Hadi Esmaeilzadeh
{"title":"尹扬:跨领域多加速程序设计摘要。","authors":"Joon Kyung Kim,&nbsp;Byung Hoon Ahn,&nbsp;Sean Kinzer,&nbsp;Soroush Ghodrati,&nbsp;Rohan Mahapatra,&nbsp;Brahmendra Yatham,&nbsp;Shu-Ting Wang,&nbsp;Dohee Kim,&nbsp;Parisa Sarikhani,&nbsp;Babak Mahmoudi,&nbsp;Divya Mahajan,&nbsp;Jongse Park,&nbsp;Hadi Esmaeilzadeh","doi":"10.1109/mm.2022.3189416","DOIUrl":null,"url":null,"abstract":"<p><p>FPGA accelerators offer performance and efficiency gains by narrowing the scope of acceleration to one algorithmic domain. However, real-life applications are often not limited to a single domain, which naturally makes <i>Cross</i>-Domain <i>Multi</i>-Acceleration a crucial next step. The challenge is, existing FPGA accelerators are built upon their specific vertically-specialized stacks, which prevents utilizing multiple accelerators from different domains. To that end, we propose a pair of dual abstractions, called Yin-Yang, which work in tandem and enable programmers to develop cross-domain applications using multiple accelerators on a FPGA. The Yin abstraction enables cross-domain algorithmic specification, while the Yang abstraction captures the accelerator capabilities. We also develop a dataflow virtual machine, dubbed XLVM, that transparently maps domain functions (Yin) to best-fit accelerator capabilities (Yang). With six real-world cross-domain applications, our evaluations show that Yin-Yang unlocks 29.4× speedup, while the best single-domain acceleration achieves 12.0×.</p>","PeriodicalId":13100,"journal":{"name":"IEEE Micro","volume":"42 5","pages":"89-98"},"PeriodicalIF":2.8000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065469/pdf/nihms-1836431.pdf","citationCount":"0","resultStr":"{\"title\":\"Yin-Yang: Programming Abstractions for Cross-Domain Multi-Acceleration.\",\"authors\":\"Joon Kyung Kim,&nbsp;Byung Hoon Ahn,&nbsp;Sean Kinzer,&nbsp;Soroush Ghodrati,&nbsp;Rohan Mahapatra,&nbsp;Brahmendra Yatham,&nbsp;Shu-Ting Wang,&nbsp;Dohee Kim,&nbsp;Parisa Sarikhani,&nbsp;Babak Mahmoudi,&nbsp;Divya Mahajan,&nbsp;Jongse Park,&nbsp;Hadi Esmaeilzadeh\",\"doi\":\"10.1109/mm.2022.3189416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>FPGA accelerators offer performance and efficiency gains by narrowing the scope of acceleration to one algorithmic domain. However, real-life applications are often not limited to a single domain, which naturally makes <i>Cross</i>-Domain <i>Multi</i>-Acceleration a crucial next step. The challenge is, existing FPGA accelerators are built upon their specific vertically-specialized stacks, which prevents utilizing multiple accelerators from different domains. To that end, we propose a pair of dual abstractions, called Yin-Yang, which work in tandem and enable programmers to develop cross-domain applications using multiple accelerators on a FPGA. The Yin abstraction enables cross-domain algorithmic specification, while the Yang abstraction captures the accelerator capabilities. We also develop a dataflow virtual machine, dubbed XLVM, that transparently maps domain functions (Yin) to best-fit accelerator capabilities (Yang). With six real-world cross-domain applications, our evaluations show that Yin-Yang unlocks 29.4× speedup, while the best single-domain acceleration achieves 12.0×.</p>\",\"PeriodicalId\":13100,\"journal\":{\"name\":\"IEEE Micro\",\"volume\":\"42 5\",\"pages\":\"89-98\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10065469/pdf/nihms-1836431.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Micro\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/mm.2022.3189416\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Micro","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/mm.2022.3189416","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/1 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

FPGA加速器通过将加速范围缩小到一个算法域来提高性能和效率。然而,现实生活中的应用程序通常不局限于单个域,这自然使跨域多加速成为关键的下一步。挑战在于,现有的FPGA加速器是建立在其特定的垂直专用堆栈上的,这阻止了使用来自不同领域的多个加速器。为此,我们提出了一对称为阴阳的双重抽象,它们协同工作,使程序员能够在FPGA上使用多个加速器开发跨域应用程序。阴抽象实现了跨领域的算法规范,而阳抽象捕获了加速器功能。我们还开发了一个数据流虚拟机,称为XLVM,它透明地将域函数(Yin)映射到最适合的加速器功能(Yang)。通过六个真实世界的跨域应用,我们的评估显示,阴阳解锁了29.4倍的加速,而最佳单域加速达到了12.0倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Yin-Yang: Programming Abstractions for Cross-Domain Multi-Acceleration.

FPGA accelerators offer performance and efficiency gains by narrowing the scope of acceleration to one algorithmic domain. However, real-life applications are often not limited to a single domain, which naturally makes Cross-Domain Multi-Acceleration a crucial next step. The challenge is, existing FPGA accelerators are built upon their specific vertically-specialized stacks, which prevents utilizing multiple accelerators from different domains. To that end, we propose a pair of dual abstractions, called Yin-Yang, which work in tandem and enable programmers to develop cross-domain applications using multiple accelerators on a FPGA. The Yin abstraction enables cross-domain algorithmic specification, while the Yang abstraction captures the accelerator capabilities. We also develop a dataflow virtual machine, dubbed XLVM, that transparently maps domain functions (Yin) to best-fit accelerator capabilities (Yang). With six real-world cross-domain applications, our evaluations show that Yin-Yang unlocks 29.4× speedup, while the best single-domain acceleration achieves 12.0×.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Micro
IEEE Micro 工程技术-计算机:软件工程
CiteScore
7.50
自引率
0.00%
发文量
164
审稿时长
>12 weeks
期刊介绍: IEEE Micro addresses users and designers of microprocessors and microprocessor systems, including managers, engineers, consultants, educators, and students involved with computers and peripherals, components and subassemblies, communications, instrumentation and control equipment, and guidance systems. Contributions should relate to the design, performance, or application of microprocessors and microcomputers. Tutorials, review papers, and discussions are also welcome. Sample topic areas include architecture, communications, data acquisition, control, hardware and software design/implementation, algorithms (including program listings), digital signal processing, microprocessor support hardware, operating systems, computer aided design, languages, application software, and development systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信