吉西他滨和顺铂通过Sp1-SAT1-多胺代谢途径诱导胰腺导管腺癌铁变态反应的协同抗肿瘤效应

IF 4.9 2区 医学 Q2 CELL BIOLOGY
Cellular Oncology Pub Date : 2024-02-01 Epub Date: 2023-09-09 DOI:10.1007/s13402-023-00870-1
Wanhui Wei, Yuanyuan Lu, Qian Hu, Jinwen Yin, Youwei Wang, Heng Zhang, Qiu Zhao, Lan Liu
{"title":"吉西他滨和顺铂通过Sp1-SAT1-多胺代谢途径诱导胰腺导管腺癌铁变态反应的协同抗肿瘤效应","authors":"Wanhui Wei, Yuanyuan Lu, Qian Hu, Jinwen Yin, Youwei Wang, Heng Zhang, Qiu Zhao, Lan Liu","doi":"10.1007/s13402-023-00870-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The combination of cisplatin and gemcitabine-based chemotherapy has been recommended as a preferred regimen for pancreatic ductal adenocarcinoma (PDAC) patients with germline-based mutations. However, the underlying mechanism remains poorly elucidated. Therefore, our study aimed to explore the mechanistic basis of the cell-killing activity of gemcitabine plus cisplatin and identify potential therapeutic targets.</p><p><strong>Methods: </strong>First, we explored the synergistic cytotoxic effects of gemcitabine and cisplatin on PDAC through in vitro and in vivo experiments. Then, we investigated ferroptosis-related biomarkers, to assess the impact of the combination therapy on ferroptosis. Using bioinformatics methods, we identified SAT1 as a potential key mediator of ferroptosis induced by gemcitabine and cisplatin. We tested the polyamine levels in PDAC cells by LC-MS after overexpressed or knocked down SAT1, and explored the role of polyamines in ferroptosis using exogenous supplementation. Finally, we explored the regulatory effect of Sp1 on SAT1 through ChIP-qPCR and dual-luciferase reporter assay.</p><p><strong>Results: </strong>Gemcitabine plus cisplatin enhanced cell death and induced ferroptosis in PDAC. This combination upregulated SAT1 transcription by inhibiting Sp1. SAT1 activation promoted the catabolism of spermine and spermidine, leading to iron accumulation and lipid peroxide generation, ultimately resulting in ferroptosis.</p><p><strong>Conclusions: </strong>In summary, our findings suggested the gemcitabine and cisplatin combination therapy induced ferroptosis in a GSH-independent manner in PDAC. The combined treatment inhibited Sp1 and upregulated SAT1 transcription, leading to the breakdown of spermine and spermidine. Therefore, targeting SAT1-induced polyamine metabolism may represent a promising therapeutic strategy for PDAC.</p>","PeriodicalId":49223,"journal":{"name":"Cellular Oncology","volume":" ","pages":"321-341"},"PeriodicalIF":4.9000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic antitumor efficacy of gemcitabine and cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via Sp1-SAT1-polyamine metabolism pathway.\",\"authors\":\"Wanhui Wei, Yuanyuan Lu, Qian Hu, Jinwen Yin, Youwei Wang, Heng Zhang, Qiu Zhao, Lan Liu\",\"doi\":\"10.1007/s13402-023-00870-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The combination of cisplatin and gemcitabine-based chemotherapy has been recommended as a preferred regimen for pancreatic ductal adenocarcinoma (PDAC) patients with germline-based mutations. However, the underlying mechanism remains poorly elucidated. Therefore, our study aimed to explore the mechanistic basis of the cell-killing activity of gemcitabine plus cisplatin and identify potential therapeutic targets.</p><p><strong>Methods: </strong>First, we explored the synergistic cytotoxic effects of gemcitabine and cisplatin on PDAC through in vitro and in vivo experiments. Then, we investigated ferroptosis-related biomarkers, to assess the impact of the combination therapy on ferroptosis. Using bioinformatics methods, we identified SAT1 as a potential key mediator of ferroptosis induced by gemcitabine and cisplatin. We tested the polyamine levels in PDAC cells by LC-MS after overexpressed or knocked down SAT1, and explored the role of polyamines in ferroptosis using exogenous supplementation. Finally, we explored the regulatory effect of Sp1 on SAT1 through ChIP-qPCR and dual-luciferase reporter assay.</p><p><strong>Results: </strong>Gemcitabine plus cisplatin enhanced cell death and induced ferroptosis in PDAC. This combination upregulated SAT1 transcription by inhibiting Sp1. SAT1 activation promoted the catabolism of spermine and spermidine, leading to iron accumulation and lipid peroxide generation, ultimately resulting in ferroptosis.</p><p><strong>Conclusions: </strong>In summary, our findings suggested the gemcitabine and cisplatin combination therapy induced ferroptosis in a GSH-independent manner in PDAC. The combined treatment inhibited Sp1 and upregulated SAT1 transcription, leading to the breakdown of spermine and spermidine. Therefore, targeting SAT1-induced polyamine metabolism may represent a promising therapeutic strategy for PDAC.</p>\",\"PeriodicalId\":49223,\"journal\":{\"name\":\"Cellular Oncology\",\"volume\":\" \",\"pages\":\"321-341\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13402-023-00870-1\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13402-023-00870-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:顺铂和吉西他滨联合化疗已被推荐为基于基因突变的胰腺导管腺癌(PDAC)患者的首选方案。然而,其潜在机制仍未得到充分阐明。因此,我们的研究旨在探索吉西他滨加顺铂的细胞杀伤活性的机制基础,并确定潜在的治疗靶点:首先,我们通过体外和体内实验探讨了吉西他滨和顺铂对 PDAC 的协同细胞毒性作用。然后,我们研究了铁蛋白沉积相关的生物标志物,以评估联合疗法对铁蛋白沉积的影响。通过生物信息学方法,我们发现 SAT1 是吉西他滨和顺铂诱导铁突变的潜在关键介质。我们通过 LC-MS 检测了过表达或敲除 SAT1 后 PDAC 细胞中的多胺水平,并利用外源补充多胺的方法探讨了多胺在铁嗜性中的作用。最后,我们通过 ChIP-qPCR 和双荧光素酶报告实验探讨了 Sp1 对 SAT1 的调控作用:结果:吉西他滨加顺铂可增强 PDAC 的细胞死亡并诱导铁变态反应。这一组合通过抑制 Sp1 上调了 SAT1 的转录。SAT1 的激活促进了精胺和亚精胺的分解,导致铁积累和过氧化脂质的生成,最终导致铁变态反应:综上所述,我们的研究结果表明,吉西他滨和顺铂联合疗法能以GSH依赖性方式诱导PDAC发生铁变态反应。联合治疗抑制了 Sp1 并上调了 SAT1 的转录,导致精胺和亚精胺的分解。因此,靶向 SAT1 诱导的多胺代谢可能是治疗 PDAC 的一种有前景的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergistic antitumor efficacy of gemcitabine and cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via Sp1-SAT1-polyamine metabolism pathway.

Synergistic antitumor efficacy of gemcitabine and cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via Sp1-SAT1-polyamine metabolism pathway.

Purpose: The combination of cisplatin and gemcitabine-based chemotherapy has been recommended as a preferred regimen for pancreatic ductal adenocarcinoma (PDAC) patients with germline-based mutations. However, the underlying mechanism remains poorly elucidated. Therefore, our study aimed to explore the mechanistic basis of the cell-killing activity of gemcitabine plus cisplatin and identify potential therapeutic targets.

Methods: First, we explored the synergistic cytotoxic effects of gemcitabine and cisplatin on PDAC through in vitro and in vivo experiments. Then, we investigated ferroptosis-related biomarkers, to assess the impact of the combination therapy on ferroptosis. Using bioinformatics methods, we identified SAT1 as a potential key mediator of ferroptosis induced by gemcitabine and cisplatin. We tested the polyamine levels in PDAC cells by LC-MS after overexpressed or knocked down SAT1, and explored the role of polyamines in ferroptosis using exogenous supplementation. Finally, we explored the regulatory effect of Sp1 on SAT1 through ChIP-qPCR and dual-luciferase reporter assay.

Results: Gemcitabine plus cisplatin enhanced cell death and induced ferroptosis in PDAC. This combination upregulated SAT1 transcription by inhibiting Sp1. SAT1 activation promoted the catabolism of spermine and spermidine, leading to iron accumulation and lipid peroxide generation, ultimately resulting in ferroptosis.

Conclusions: In summary, our findings suggested the gemcitabine and cisplatin combination therapy induced ferroptosis in a GSH-independent manner in PDAC. The combined treatment inhibited Sp1 and upregulated SAT1 transcription, leading to the breakdown of spermine and spermidine. Therefore, targeting SAT1-induced polyamine metabolism may represent a promising therapeutic strategy for PDAC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cellular Oncology
Cellular Oncology ONCOLOGY-CELL BIOLOGY
CiteScore
10.30
自引率
1.50%
发文量
86
审稿时长
12 months
期刊介绍: The Official Journal of the International Society for Cellular Oncology Focuses on translational research Addresses the conversion of cell biology to clinical applications Cellular Oncology publishes scientific contributions from various biomedical and clinical disciplines involved in basic and translational cancer research on the cell and tissue level, technical and bioinformatics developments in this area, and clinical applications. This includes a variety of fields like genome technology, micro-arrays and other high-throughput techniques, genomic instability, SNP, DNA methylation, signaling pathways, DNA organization, (sub)microscopic imaging, proteomics, bioinformatics, functional effects of genomics, drug design and development, molecular diagnostics and targeted cancer therapies, genotype-phenotype interactions. A major goal is to translate the latest developments in these fields from the research laboratory into routine patient management. To this end Cellular Oncology forms a platform of scientific information exchange between molecular biologists and geneticists, technical developers, pathologists, (medical) oncologists and other clinicians involved in the management of cancer patients. In vitro studies are preferentially supported by validations in tumor tissue with clinicopathological associations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信