{"title":"聚乙二醇修饰的介孔零价铁纳米颗粒作为改善废水中刚果红还原降解的潜在催化剂。","authors":"Ipsita Som, Mouni Roy, Rajnarayan Saha","doi":"10.1080/10934529.2023.2215679","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, bare zero-valent iron nanoparticles (nZVI) have been modified using polyethylene glycol (PEG) of various molecular weight in a facile technique. The synthesized nZVI modified with PEG, M.W. of 600 and 6000 was denoted by nZVI-PEG<sub>600</sub> and nZVI-PEG<sub>6000</sub>, respectively, and compared their catalytic activity towards the reductive degradation of Congo red (CR) using NaBH<sub>4</sub>.The existence of PEG layer surrounds the nZVI core was confirmed by several characterization tools, such as XRD, FTIR, FESEM and TEM. Herein, both nZVI-PEG<sub>600</sub> and nZVI-PEG<sub>6000</sub> exhibited remarkable removal efficiencies of 89.6% and 99.2% within 14 min of reaction time. The optimum reaction parameters were found to be as follows: 0.2 g L<sup>-1</sup> catalyst dose and initial dye concentration of 2 × 10<sup>-5</sup> molL<sup>-1</sup> etc. Kinetic studies of dye degradation were investigated which follow pseudo-1<sup>st</sup>-order kinetics. The TOC analysis confirmed the complete mineralization of CR dye by nZVI-PEG<sub>6000</sub> nanocatalyst. GCMS analysis of plausible degraded products was performed to elucidate a probable mechanistic pathway of CR degradation. Further, we have investigated the degradation of two anionic dyes mixture, i.e., CR and methyl orange (MO) using best catalyst, i.e., nZVI-PEG<sub>6000</sub>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polyethylene glycol-modified mesoporous zerovalent iron nanoparticle as potential catalyst for improved reductive degradation of Congo red from wastewater.\",\"authors\":\"Ipsita Som, Mouni Roy, Rajnarayan Saha\",\"doi\":\"10.1080/10934529.2023.2215679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, bare zero-valent iron nanoparticles (nZVI) have been modified using polyethylene glycol (PEG) of various molecular weight in a facile technique. The synthesized nZVI modified with PEG, M.W. of 600 and 6000 was denoted by nZVI-PEG<sub>600</sub> and nZVI-PEG<sub>6000</sub>, respectively, and compared their catalytic activity towards the reductive degradation of Congo red (CR) using NaBH<sub>4</sub>.The existence of PEG layer surrounds the nZVI core was confirmed by several characterization tools, such as XRD, FTIR, FESEM and TEM. Herein, both nZVI-PEG<sub>600</sub> and nZVI-PEG<sub>6000</sub> exhibited remarkable removal efficiencies of 89.6% and 99.2% within 14 min of reaction time. The optimum reaction parameters were found to be as follows: 0.2 g L<sup>-1</sup> catalyst dose and initial dye concentration of 2 × 10<sup>-5</sup> molL<sup>-1</sup> etc. Kinetic studies of dye degradation were investigated which follow pseudo-1<sup>st</sup>-order kinetics. The TOC analysis confirmed the complete mineralization of CR dye by nZVI-PEG<sub>6000</sub> nanocatalyst. GCMS analysis of plausible degraded products was performed to elucidate a probable mechanistic pathway of CR degradation. Further, we have investigated the degradation of two anionic dyes mixture, i.e., CR and methyl orange (MO) using best catalyst, i.e., nZVI-PEG<sub>6000</sub>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2215679\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2215679","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在这项研究中,裸零价铁纳米颗粒(nZVI)已经在一个简单的技术,用不同分子量的聚乙二醇(PEG)修饰。用PEG修饰合成的nZVI,将600和6000的M.W.分别记为nZVI- peg600和nZVI- peg6000,并比较它们对NaBH4还原性降解刚果红(CR)的催化活性。通过XRD、FTIR、FESEM和TEM等表征手段证实了nZVI芯周围存在PEG层。其中,nZVI-PEG600和nZVI-PEG6000在14 min内的去除率分别为89.6%和99.2%。最佳反应参数为催化剂用量0.2 g L-1,初始染料浓度2 × 10-5 mol -1等。染料降解动力学研究遵循准一级动力学。TOC分析证实了nZVI-PEG6000纳米催化剂对CR染料的完全矿化作用。对可能的降解产物进行了GCMS分析,以阐明CR降解的可能机制途径。此外,我们还研究了使用最佳催化剂nZVI-PEG6000降解CR和甲基橙(MO)两种阴离子染料混合物。
Polyethylene glycol-modified mesoporous zerovalent iron nanoparticle as potential catalyst for improved reductive degradation of Congo red from wastewater.
In this study, bare zero-valent iron nanoparticles (nZVI) have been modified using polyethylene glycol (PEG) of various molecular weight in a facile technique. The synthesized nZVI modified with PEG, M.W. of 600 and 6000 was denoted by nZVI-PEG600 and nZVI-PEG6000, respectively, and compared their catalytic activity towards the reductive degradation of Congo red (CR) using NaBH4.The existence of PEG layer surrounds the nZVI core was confirmed by several characterization tools, such as XRD, FTIR, FESEM and TEM. Herein, both nZVI-PEG600 and nZVI-PEG6000 exhibited remarkable removal efficiencies of 89.6% and 99.2% within 14 min of reaction time. The optimum reaction parameters were found to be as follows: 0.2 g L-1 catalyst dose and initial dye concentration of 2 × 10-5 molL-1 etc. Kinetic studies of dye degradation were investigated which follow pseudo-1st-order kinetics. The TOC analysis confirmed the complete mineralization of CR dye by nZVI-PEG6000 nanocatalyst. GCMS analysis of plausible degraded products was performed to elucidate a probable mechanistic pathway of CR degradation. Further, we have investigated the degradation of two anionic dyes mixture, i.e., CR and methyl orange (MO) using best catalyst, i.e., nZVI-PEG6000.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.