{"title":"新型骨形态发生蛋白(BMP)-2/4共识肽(BCP)在C2C12细胞成骨分化中的作用。","authors":"Jin Wook Hwang, Youn Ho Han","doi":"10.2174/1389203724666230614112027","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Despite the promising clinical potential of bone morphogenetic protein (BMP)-related therapies for bone formation, their side effects warrant the need for alternative therapeutic peptides. BMP family members can aid in bone repair; however, peptides derived from BMP2/ 4 have not yet been investigated.</p><p><strong>Methods: </strong>In this study, three candidates BMP2/4 consensus peptide (BCP) 1, 2, and 3 were identified and their ability to induce osteogenesis in C2C12 cells was analyzed. First, an alkaline phosphatase (ALP) staining assay was performed to evaluate the osteogenic effects of BCPs. Next, the effects of BCPs on RNA expression levels and protein abundances of osteogenic markers were explored. Furthermore, the transcriptional activity of ALP by BCP1 and <i>in silico</i> molecular docking model on BMP type IA receptor (BRIA) were performed.</p><p><strong>Results: </strong>BCP1-3 induced higher RUNX2 expression than BMP2. Interestingly, among them, BCP1 significantly promoted osteoblast differentiation more than BMP2 in ALP staining with no cytotoxicity. BCP1 significantly induced the osteoblast markers, and the highest RUNX2 expression was observed at 100 ng/mL compared to other concentrations. In transfection experiments, BCP1 stimulated osteoblast differentiation via RUNX2 activation and the Smad signaling pathway. Finally, <i>in silico</i> molecular docking suggested the possible binding sites of BCP1 on BRIA.</p><p><strong>Conclusion: </strong>These results show that BCP1 promotes osteogenicity in C2C12 cells. This study suggests that BCP1 is the most promising candidate peptide to replace BMP2 for osteoblast differentiation.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel bone Morphogenetic Protein (BMP)-2/4 Consensus Peptide (BCP) for the Osteogenic Differentiation of C2C12 Cells.\",\"authors\":\"Jin Wook Hwang, Youn Ho Han\",\"doi\":\"10.2174/1389203724666230614112027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Despite the promising clinical potential of bone morphogenetic protein (BMP)-related therapies for bone formation, their side effects warrant the need for alternative therapeutic peptides. BMP family members can aid in bone repair; however, peptides derived from BMP2/ 4 have not yet been investigated.</p><p><strong>Methods: </strong>In this study, three candidates BMP2/4 consensus peptide (BCP) 1, 2, and 3 were identified and their ability to induce osteogenesis in C2C12 cells was analyzed. First, an alkaline phosphatase (ALP) staining assay was performed to evaluate the osteogenic effects of BCPs. Next, the effects of BCPs on RNA expression levels and protein abundances of osteogenic markers were explored. Furthermore, the transcriptional activity of ALP by BCP1 and <i>in silico</i> molecular docking model on BMP type IA receptor (BRIA) were performed.</p><p><strong>Results: </strong>BCP1-3 induced higher RUNX2 expression than BMP2. Interestingly, among them, BCP1 significantly promoted osteoblast differentiation more than BMP2 in ALP staining with no cytotoxicity. BCP1 significantly induced the osteoblast markers, and the highest RUNX2 expression was observed at 100 ng/mL compared to other concentrations. In transfection experiments, BCP1 stimulated osteoblast differentiation via RUNX2 activation and the Smad signaling pathway. Finally, <i>in silico</i> molecular docking suggested the possible binding sites of BCP1 on BRIA.</p><p><strong>Conclusion: </strong>These results show that BCP1 promotes osteogenicity in C2C12 cells. This study suggests that BCP1 is the most promising candidate peptide to replace BMP2 for osteoblast differentiation.</p>\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1389203724666230614112027\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389203724666230614112027","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Novel bone Morphogenetic Protein (BMP)-2/4 Consensus Peptide (BCP) for the Osteogenic Differentiation of C2C12 Cells.
Background: Despite the promising clinical potential of bone morphogenetic protein (BMP)-related therapies for bone formation, their side effects warrant the need for alternative therapeutic peptides. BMP family members can aid in bone repair; however, peptides derived from BMP2/ 4 have not yet been investigated.
Methods: In this study, three candidates BMP2/4 consensus peptide (BCP) 1, 2, and 3 were identified and their ability to induce osteogenesis in C2C12 cells was analyzed. First, an alkaline phosphatase (ALP) staining assay was performed to evaluate the osteogenic effects of BCPs. Next, the effects of BCPs on RNA expression levels and protein abundances of osteogenic markers were explored. Furthermore, the transcriptional activity of ALP by BCP1 and in silico molecular docking model on BMP type IA receptor (BRIA) were performed.
Results: BCP1-3 induced higher RUNX2 expression than BMP2. Interestingly, among them, BCP1 significantly promoted osteoblast differentiation more than BMP2 in ALP staining with no cytotoxicity. BCP1 significantly induced the osteoblast markers, and the highest RUNX2 expression was observed at 100 ng/mL compared to other concentrations. In transfection experiments, BCP1 stimulated osteoblast differentiation via RUNX2 activation and the Smad signaling pathway. Finally, in silico molecular docking suggested the possible binding sites of BCP1 on BRIA.
Conclusion: These results show that BCP1 promotes osteogenicity in C2C12 cells. This study suggests that BCP1 is the most promising candidate peptide to replace BMP2 for osteoblast differentiation.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.