{"title":"Ufmanization在植物中桥接自噬和ER稳态。","authors":"Baiying Li, Liwen Jiang","doi":"10.1080/15548627.2023.2203985","DOIUrl":null,"url":null,"abstract":"<p><p>The autophagic machinery is highly conserved in eukaryotes. Plants, as sessile organisms, are more susceptible to environmental stresses than animals. Autophagy plays a pivotal role in plant stress responses, but the regulation of autophagic flux in plants remains enigmatic with few autophagic receptors identified. We recently characterized an E3 ligase, the ubiquitin-fold modifier 1 (Ufm1) ligase 1 (Ufl1), as well as its small modifier protein Ufm1, as interactors of the core autophagy-related (ATG) proteins. Mutants of these ufmylation system components are hypersensitive to salt stress and trigger the upregulation of endoplasmic reticulum (ER) stress-responsive genes, as well as the accumulation of ER sheets caused by a defect in reticulophagy. Increased expression of Ufl1, Ufm1 and Ufm1-conjugating enzyme 1 (Ufc1) are also triggered by salt stress in plants. This study identified and demonstrated the participation of ufmylation components in maintaining ER homeostasis by regulating reticulophagy under salt stress in plants.<b>Abbreviations</b>: ATG, autophagy-related; ER, endoplasmic reticulum; LIR, LC3-interacting region; ROS, reactive oxygen species; CDK5RAP3/C53, CDK5 regulatory subunit-associated protein 3; Uba5, Ufm1-activating enzyme 5; Ufc1, Ufm1-conjugating enzyme 1; Ufl1, Ufm1 ligase 1; Ufm1, ubiquitin-fold modifier 1; UPR, unfolded protein response.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":"19 10","pages":"2830-2831"},"PeriodicalIF":14.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472842/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ufmylation bridges autophagy and ER homeostasis in plants.\",\"authors\":\"Baiying Li, Liwen Jiang\",\"doi\":\"10.1080/15548627.2023.2203985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The autophagic machinery is highly conserved in eukaryotes. Plants, as sessile organisms, are more susceptible to environmental stresses than animals. Autophagy plays a pivotal role in plant stress responses, but the regulation of autophagic flux in plants remains enigmatic with few autophagic receptors identified. We recently characterized an E3 ligase, the ubiquitin-fold modifier 1 (Ufm1) ligase 1 (Ufl1), as well as its small modifier protein Ufm1, as interactors of the core autophagy-related (ATG) proteins. Mutants of these ufmylation system components are hypersensitive to salt stress and trigger the upregulation of endoplasmic reticulum (ER) stress-responsive genes, as well as the accumulation of ER sheets caused by a defect in reticulophagy. Increased expression of Ufl1, Ufm1 and Ufm1-conjugating enzyme 1 (Ufc1) are also triggered by salt stress in plants. This study identified and demonstrated the participation of ufmylation components in maintaining ER homeostasis by regulating reticulophagy under salt stress in plants.<b>Abbreviations</b>: ATG, autophagy-related; ER, endoplasmic reticulum; LIR, LC3-interacting region; ROS, reactive oxygen species; CDK5RAP3/C53, CDK5 regulatory subunit-associated protein 3; Uba5, Ufm1-activating enzyme 5; Ufc1, Ufm1-conjugating enzyme 1; Ufl1, Ufm1 ligase 1; Ufm1, ubiquitin-fold modifier 1; UPR, unfolded protein response.</p>\",\"PeriodicalId\":8722,\"journal\":{\"name\":\"Autophagy\",\"volume\":\"19 10\",\"pages\":\"2830-2831\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10472842/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2023.2203985\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15548627.2023.2203985","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Ufmylation bridges autophagy and ER homeostasis in plants.
The autophagic machinery is highly conserved in eukaryotes. Plants, as sessile organisms, are more susceptible to environmental stresses than animals. Autophagy plays a pivotal role in plant stress responses, but the regulation of autophagic flux in plants remains enigmatic with few autophagic receptors identified. We recently characterized an E3 ligase, the ubiquitin-fold modifier 1 (Ufm1) ligase 1 (Ufl1), as well as its small modifier protein Ufm1, as interactors of the core autophagy-related (ATG) proteins. Mutants of these ufmylation system components are hypersensitive to salt stress and trigger the upregulation of endoplasmic reticulum (ER) stress-responsive genes, as well as the accumulation of ER sheets caused by a defect in reticulophagy. Increased expression of Ufl1, Ufm1 and Ufm1-conjugating enzyme 1 (Ufc1) are also triggered by salt stress in plants. This study identified and demonstrated the participation of ufmylation components in maintaining ER homeostasis by regulating reticulophagy under salt stress in plants.Abbreviations: ATG, autophagy-related; ER, endoplasmic reticulum; LIR, LC3-interacting region; ROS, reactive oxygen species; CDK5RAP3/C53, CDK5 regulatory subunit-associated protein 3; Uba5, Ufm1-activating enzyme 5; Ufc1, Ufm1-conjugating enzyme 1; Ufl1, Ufm1 ligase 1; Ufm1, ubiquitin-fold modifier 1; UPR, unfolded protein response.
期刊介绍:
Autophagy is a peer-reviewed journal that publishes research on autophagic processes, including the lysosome/vacuole dependent degradation of intracellular material. It aims to be the premier journal in the field and covers various connections between autophagy and human health and disease, such as cancer, neurodegeneration, aging, diabetes, myopathies, and heart disease. Autophagy is interested in all experimental systems, from yeast to human. Suggestions for specialized topics are welcome.
The journal accepts the following types of articles: Original research, Reviews, Technical papers, Brief Reports, Addenda, Letters to the Editor, Commentaries and Views, and Articles on science and art.
Autophagy is abstracted/indexed in Adis International Ltd (Reactions Weekly), EBSCOhost (Biological Abstracts), Elsevier BV (EMBASE and Scopus), PubMed, Biological Abstracts, Science Citation Index Expanded, Web of Science, and MEDLINE.