羊作为耳科研究的大型动物模型:颞骨提取和经乳突面隐窝手术入路。

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Nicholas A Waring, Alexander Chern, Brandon J Vilarello, Jeffrey H Lang, Elizabeth S Olson, Hideko Heidi Nakajima
{"title":"羊作为耳科研究的大型动物模型:颞骨提取和经乳突面隐窝手术入路。","authors":"Nicholas A Waring, Alexander Chern, Brandon J Vilarello, Jeffrey H Lang, Elizabeth S Olson, Hideko Heidi Nakajima","doi":"10.1007/s10162-023-00907-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Sheep are used as a large-animal model for otology research and can be used to study implantable hearing devices. However, a method for temporal bone extraction in sheep, which enables various experiments, has not been described, and literature on middle ear access is limited. We describe a method for temporal bone extraction and an extended facial recess surgical approach to the middle ear in sheep.</p><p><strong>Methods: </strong>Ten temporal bones from five Hampshire sheep head cadavers were extracted using an oscillating saw. After craniotomy and removal of the brain, a coronal cut was made at the posterior aspect of the orbit followed by a midsagittal cut of the occipital bone and disarticulation of the atlanto-occipital joint. Temporal bones were surgically prepared with an extended facial recess approach. Micro-CT scans of each temporal bone were obtained, and anatomic dimensions were measured.</p><p><strong>Results: </strong>Temporal bone extraction was successful in 10/10 temporal bones. Extended facial recess approach exposed the malleus, incus, stapes, and round window while preserving the facial nerve, with the following surgical considerations: minimally pneumatized mastoid; tegmen (superior limit of mastoid cavity) is low-lying and sits below temporal artery; chorda tympani sacrificed to optimize middle ear exposure; incus buttress does not obscure view of middle ear. Distance between the superior aspect of external auditory canal and tegmen was 2.7 (SD 0.9) mm.</p><p><strong>Conclusion: </strong>We identified anatomic landmarks for temporal bone extraction and describe an extended facial recess approach in sheep that exposes the ossicles and round window. This approach is feasible for studying implantable hearing devices.</p>","PeriodicalId":56283,"journal":{"name":"Jaro-Journal of the Association for Research in Otolaryngology","volume":" ","pages":"487-497"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695901/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sheep as a Large-Animal Model for Otology Research: Temporal Bone Extraction and Transmastoid Facial Recess Surgical Approach.\",\"authors\":\"Nicholas A Waring, Alexander Chern, Brandon J Vilarello, Jeffrey H Lang, Elizabeth S Olson, Hideko Heidi Nakajima\",\"doi\":\"10.1007/s10162-023-00907-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Sheep are used as a large-animal model for otology research and can be used to study implantable hearing devices. However, a method for temporal bone extraction in sheep, which enables various experiments, has not been described, and literature on middle ear access is limited. We describe a method for temporal bone extraction and an extended facial recess surgical approach to the middle ear in sheep.</p><p><strong>Methods: </strong>Ten temporal bones from five Hampshire sheep head cadavers were extracted using an oscillating saw. After craniotomy and removal of the brain, a coronal cut was made at the posterior aspect of the orbit followed by a midsagittal cut of the occipital bone and disarticulation of the atlanto-occipital joint. Temporal bones were surgically prepared with an extended facial recess approach. Micro-CT scans of each temporal bone were obtained, and anatomic dimensions were measured.</p><p><strong>Results: </strong>Temporal bone extraction was successful in 10/10 temporal bones. Extended facial recess approach exposed the malleus, incus, stapes, and round window while preserving the facial nerve, with the following surgical considerations: minimally pneumatized mastoid; tegmen (superior limit of mastoid cavity) is low-lying and sits below temporal artery; chorda tympani sacrificed to optimize middle ear exposure; incus buttress does not obscure view of middle ear. Distance between the superior aspect of external auditory canal and tegmen was 2.7 (SD 0.9) mm.</p><p><strong>Conclusion: </strong>We identified anatomic landmarks for temporal bone extraction and describe an extended facial recess approach in sheep that exposes the ossicles and round window. This approach is feasible for studying implantable hearing devices.</p>\",\"PeriodicalId\":56283,\"journal\":{\"name\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"volume\":\" \",\"pages\":\"487-497\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695901/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jaro-Journal of the Association for Research in Otolaryngology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10162-023-00907-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jaro-Journal of the Association for Research in Otolaryngology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10162-023-00907-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

目的:羊作为耳科研究的大型动物模型,可用于植入式助听器的研究。然而,一种能够进行各种实验的羊颞骨提取方法尚未被描述,并且关于中耳通道的文献有限。我们描述了一种方法颞骨提取和延长面部隐窝手术入路中耳羊。方法:用摆动锯从5具汉普郡羊头尸体上提取10块颞骨。在开颅和去脑后,在眶后侧做冠状切口,接着是枕骨正中矢状切口和寰枕关节脱臼。颞骨采用延伸面隐入路手术准备。获得各颞骨的显微ct扫描,并测量解剖尺寸。结果:10/10颞骨拔牙成功。扩大面神经隐窝入路在保留面神经的同时暴露了锤骨、incus、镫骨和圆窗,手术注意事项如下:乳突骨最小气化;乳突上缘位于颞动脉下方,位置较低;牺牲中耳弦优化中耳暴露;Incus扶壁不遮挡中耳视野。结论:我们确定了颞骨提取的解剖标志,并描述了一种延长的面部隐窝入路,该入路暴露了小骨和圆窗。这种方法对于研究植入式助听器是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sheep as a Large-Animal Model for Otology Research: Temporal Bone Extraction and Transmastoid Facial Recess Surgical Approach.

Sheep as a Large-Animal Model for Otology Research: Temporal Bone Extraction and Transmastoid Facial Recess Surgical Approach.

Purpose: Sheep are used as a large-animal model for otology research and can be used to study implantable hearing devices. However, a method for temporal bone extraction in sheep, which enables various experiments, has not been described, and literature on middle ear access is limited. We describe a method for temporal bone extraction and an extended facial recess surgical approach to the middle ear in sheep.

Methods: Ten temporal bones from five Hampshire sheep head cadavers were extracted using an oscillating saw. After craniotomy and removal of the brain, a coronal cut was made at the posterior aspect of the orbit followed by a midsagittal cut of the occipital bone and disarticulation of the atlanto-occipital joint. Temporal bones were surgically prepared with an extended facial recess approach. Micro-CT scans of each temporal bone were obtained, and anatomic dimensions were measured.

Results: Temporal bone extraction was successful in 10/10 temporal bones. Extended facial recess approach exposed the malleus, incus, stapes, and round window while preserving the facial nerve, with the following surgical considerations: minimally pneumatized mastoid; tegmen (superior limit of mastoid cavity) is low-lying and sits below temporal artery; chorda tympani sacrificed to optimize middle ear exposure; incus buttress does not obscure view of middle ear. Distance between the superior aspect of external auditory canal and tegmen was 2.7 (SD 0.9) mm.

Conclusion: We identified anatomic landmarks for temporal bone extraction and describe an extended facial recess approach in sheep that exposes the ossicles and round window. This approach is feasible for studying implantable hearing devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
57
审稿时长
6-12 weeks
期刊介绍: JARO is a peer-reviewed journal that publishes research findings from disciplines related to otolaryngology and communications sciences, including hearing, balance, speech and voice. JARO welcomes submissions describing experimental research that investigates the mechanisms underlying problems of basic and/or clinical significance. Authors are encouraged to familiarize themselves with the kinds of papers carried by JARO by looking at past issues. Clinical case studies and pharmaceutical screens are not likely to be considered unless they reveal underlying mechanisms. Methods papers are not encouraged unless they include significant new findings as well. Reviews will be published at the discretion of the editorial board; consult the editor-in-chief before submitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信