{"title":"使用清晰的招聘小组来衡量生物污染社区的招聘和增长。","authors":"Ann Wassick, Kelli Z Hunsucker, Geoffrey Swain","doi":"10.1080/08927014.2023.2243236","DOIUrl":null,"url":null,"abstract":"<p><p>Ecological monitoring has been recognized as a key tool for guiding biofouling management practices. A two-year study was designed to collect comprehensive data on the biofouling community progression at Port Canaveral, Florida, using clear recruitment panels and a scanner to directly observe organisms attached to the surface. This method allowed for minimal disruption to the natural community development and aided the collection of a suite of metrics to explore environmental relationships. Seasonal changes in community composition and biofouling pressure, especially at earlier stages, were related to abiotic conditions. Interannual variation within seasonal communities was also observed. The type of dominant organism present impacted the rate at which surfaces were covered (e.g. fastest cover with tunicates) and the overall biomass accumulation (e.g. highest rate with tubeworms). Results highlight that understanding the influence of the time of year and the dominant organism identity is ecologically vital for improving biofouling management.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measuring the recruitment and growth of biofouling communities using clear recruitment panels.\",\"authors\":\"Ann Wassick, Kelli Z Hunsucker, Geoffrey Swain\",\"doi\":\"10.1080/08927014.2023.2243236\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ecological monitoring has been recognized as a key tool for guiding biofouling management practices. A two-year study was designed to collect comprehensive data on the biofouling community progression at Port Canaveral, Florida, using clear recruitment panels and a scanner to directly observe organisms attached to the surface. This method allowed for minimal disruption to the natural community development and aided the collection of a suite of metrics to explore environmental relationships. Seasonal changes in community composition and biofouling pressure, especially at earlier stages, were related to abiotic conditions. Interannual variation within seasonal communities was also observed. The type of dominant organism present impacted the rate at which surfaces were covered (e.g. fastest cover with tunicates) and the overall biomass accumulation (e.g. highest rate with tubeworms). Results highlight that understanding the influence of the time of year and the dominant organism identity is ecologically vital for improving biofouling management.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/08927014.2023.2243236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2023.2243236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Measuring the recruitment and growth of biofouling communities using clear recruitment panels.
Ecological monitoring has been recognized as a key tool for guiding biofouling management practices. A two-year study was designed to collect comprehensive data on the biofouling community progression at Port Canaveral, Florida, using clear recruitment panels and a scanner to directly observe organisms attached to the surface. This method allowed for minimal disruption to the natural community development and aided the collection of a suite of metrics to explore environmental relationships. Seasonal changes in community composition and biofouling pressure, especially at earlier stages, were related to abiotic conditions. Interannual variation within seasonal communities was also observed. The type of dominant organism present impacted the rate at which surfaces were covered (e.g. fastest cover with tunicates) and the overall biomass accumulation (e.g. highest rate with tubeworms). Results highlight that understanding the influence of the time of year and the dominant organism identity is ecologically vital for improving biofouling management.