{"title":"利用人工智能(AI)和数据平台的医疗支持系统的新可能性。","authors":"Kenji Karako, Peipei Song, Yu Chen, Wei Tang","doi":"10.5582/bst.2023.01138","DOIUrl":null,"url":null,"abstract":"<p><p>In Japan, there is a growing initiative to construct centralized databases and platforms that can aggregate and manage a vast range of medical, health, and caregiving data for research and analysis. Recent advancements in artificial intelligence (AI), particularly in general-purpose models like the Segment Anything model and Chat GPT, promise significant progress towards utilizing such data-rich platforms effectively for healthcare. Traditionally, AI has displayed superior performance by learning specific images or languages, but now it is advancing towards creating models capable of learning universal traits from images and languages by training on extensive datasets. The challenge lies in the fact that these general-purpose models are trained on data that does not sufficiently incorporate medical information, making their direct application to healthcare difficult. However, the introduction of data platforms can potentially solve this problem. This would lead to the development of universally applicable models to process medical images and AI assistants that can support both doctors and patients. These medical AI assistants can function as a \"sub-doctor\" with extensive knowledge, assisting in comprehensive analysis of symptoms, early detection of rare diseases, and more. They can also serve as an intermediary between the doctor and the patient, helping to simplify consultations and enhance patient understanding of medical conditions and treatments. By bridging this gap, the AI assistant can help to reduce doctors' workload, improve the quality of healthcare, and facilitate early detection and prevention in the elderly population.</p>","PeriodicalId":8957,"journal":{"name":"Bioscience trends","volume":"17 3","pages":"186-189"},"PeriodicalIF":5.7000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New possibilities for medical support systems utilizing artificial intelligence (AI) and data platforms.\",\"authors\":\"Kenji Karako, Peipei Song, Yu Chen, Wei Tang\",\"doi\":\"10.5582/bst.2023.01138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In Japan, there is a growing initiative to construct centralized databases and platforms that can aggregate and manage a vast range of medical, health, and caregiving data for research and analysis. Recent advancements in artificial intelligence (AI), particularly in general-purpose models like the Segment Anything model and Chat GPT, promise significant progress towards utilizing such data-rich platforms effectively for healthcare. Traditionally, AI has displayed superior performance by learning specific images or languages, but now it is advancing towards creating models capable of learning universal traits from images and languages by training on extensive datasets. The challenge lies in the fact that these general-purpose models are trained on data that does not sufficiently incorporate medical information, making their direct application to healthcare difficult. However, the introduction of data platforms can potentially solve this problem. This would lead to the development of universally applicable models to process medical images and AI assistants that can support both doctors and patients. These medical AI assistants can function as a \\\"sub-doctor\\\" with extensive knowledge, assisting in comprehensive analysis of symptoms, early detection of rare diseases, and more. They can also serve as an intermediary between the doctor and the patient, helping to simplify consultations and enhance patient understanding of medical conditions and treatments. By bridging this gap, the AI assistant can help to reduce doctors' workload, improve the quality of healthcare, and facilitate early detection and prevention in the elderly population.</p>\",\"PeriodicalId\":8957,\"journal\":{\"name\":\"Bioscience trends\",\"volume\":\"17 3\",\"pages\":\"186-189\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience trends\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.5582/bst.2023.01138\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience trends","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5582/bst.2023.01138","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
New possibilities for medical support systems utilizing artificial intelligence (AI) and data platforms.
In Japan, there is a growing initiative to construct centralized databases and platforms that can aggregate and manage a vast range of medical, health, and caregiving data for research and analysis. Recent advancements in artificial intelligence (AI), particularly in general-purpose models like the Segment Anything model and Chat GPT, promise significant progress towards utilizing such data-rich platforms effectively for healthcare. Traditionally, AI has displayed superior performance by learning specific images or languages, but now it is advancing towards creating models capable of learning universal traits from images and languages by training on extensive datasets. The challenge lies in the fact that these general-purpose models are trained on data that does not sufficiently incorporate medical information, making their direct application to healthcare difficult. However, the introduction of data platforms can potentially solve this problem. This would lead to the development of universally applicable models to process medical images and AI assistants that can support both doctors and patients. These medical AI assistants can function as a "sub-doctor" with extensive knowledge, assisting in comprehensive analysis of symptoms, early detection of rare diseases, and more. They can also serve as an intermediary between the doctor and the patient, helping to simplify consultations and enhance patient understanding of medical conditions and treatments. By bridging this gap, the AI assistant can help to reduce doctors' workload, improve the quality of healthcare, and facilitate early detection and prevention in the elderly population.
期刊介绍:
BioScience Trends (Print ISSN 1881-7815, Online ISSN 1881-7823) is an international peer-reviewed journal. BioScience Trends devotes to publishing the latest and most exciting advances in scientific research. Articles cover fields of life science such as biochemistry, molecular biology, clinical research, public health, medical care system, and social science in order to encourage cooperation and exchange among scientists and clinical researchers.