Taki Nishimura, Gianmarco Lazzeri, Sharon A Tooze, Roberto Covino
{"title":"ATG3 蛋白具有独特的两性α螺旋,对 Atg8/LC3 脂化反应至关重要。","authors":"Taki Nishimura, Gianmarco Lazzeri, Sharon A Tooze, Roberto Covino","doi":"10.1080/15548627.2023.2255458","DOIUrl":null,"url":null,"abstract":"<p><p>In our recent paper, we uncovered that ATG3 exhibits a large degree of structural dynamics on autophagic membranes to efficiently carry out LC3 lipidation. ATG3 proteins possess an amphipathic α-helix (AH) identified by a small number of bulky and hydrophobic residues. This biophysical fingerprint allows for transient membrane association of ATG3 and facilitates its enzymatic reaction. This study will pave the way for a structural and mechanistic understanding of how membrane association of ATG proteins is orchestrated during autophagosome formation.</p>","PeriodicalId":8722,"journal":{"name":"Autophagy","volume":" ","pages":"212-213"},"PeriodicalIF":14.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761131/pdf/","citationCount":"0","resultStr":"{\"title\":\"ATG3 proteins possess a unique amphipathic α-helix essential for the Atg8/LC3 lipidation reaction.\",\"authors\":\"Taki Nishimura, Gianmarco Lazzeri, Sharon A Tooze, Roberto Covino\",\"doi\":\"10.1080/15548627.2023.2255458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In our recent paper, we uncovered that ATG3 exhibits a large degree of structural dynamics on autophagic membranes to efficiently carry out LC3 lipidation. ATG3 proteins possess an amphipathic α-helix (AH) identified by a small number of bulky and hydrophobic residues. This biophysical fingerprint allows for transient membrane association of ATG3 and facilitates its enzymatic reaction. This study will pave the way for a structural and mechanistic understanding of how membrane association of ATG proteins is orchestrated during autophagosome formation.</p>\",\"PeriodicalId\":8722,\"journal\":{\"name\":\"Autophagy\",\"volume\":\" \",\"pages\":\"212-213\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761131/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Autophagy\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15548627.2023.2255458\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/9/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autophagy","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15548627.2023.2255458","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/9/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
ATG3 proteins possess a unique amphipathic α-helix essential for the Atg8/LC3 lipidation reaction.
In our recent paper, we uncovered that ATG3 exhibits a large degree of structural dynamics on autophagic membranes to efficiently carry out LC3 lipidation. ATG3 proteins possess an amphipathic α-helix (AH) identified by a small number of bulky and hydrophobic residues. This biophysical fingerprint allows for transient membrane association of ATG3 and facilitates its enzymatic reaction. This study will pave the way for a structural and mechanistic understanding of how membrane association of ATG proteins is orchestrated during autophagosome formation.
期刊介绍:
Autophagy is a peer-reviewed journal that publishes research on autophagic processes, including the lysosome/vacuole dependent degradation of intracellular material. It aims to be the premier journal in the field and covers various connections between autophagy and human health and disease, such as cancer, neurodegeneration, aging, diabetes, myopathies, and heart disease. Autophagy is interested in all experimental systems, from yeast to human. Suggestions for specialized topics are welcome.
The journal accepts the following types of articles: Original research, Reviews, Technical papers, Brief Reports, Addenda, Letters to the Editor, Commentaries and Views, and Articles on science and art.
Autophagy is abstracted/indexed in Adis International Ltd (Reactions Weekly), EBSCOhost (Biological Abstracts), Elsevier BV (EMBASE and Scopus), PubMed, Biological Abstracts, Science Citation Index Expanded, Web of Science, and MEDLINE.