Hong-mei Luo , Jia-rong Ye , Fan-qin Pu , Hong-liang Luo , Wen-jun Zhang
{"title":"P2X2/3受体在内脏疼痛中的作用及治疗靶点","authors":"Hong-mei Luo , Jia-rong Ye , Fan-qin Pu , Hong-liang Luo , Wen-jun Zhang","doi":"10.1016/j.npep.2023.102355","DOIUrl":null,"url":null,"abstract":"<div><p>Visceral pain<span> (VP) is caused by internal organ disease. VP is involved in nerve conduction<span> and related signaling molecules, but its specific pathogenesis has not yet been fully elucidated. Currently, there are no effective methods for treating VP. The role of P2X2/3 in VP has progressed. After visceral organs are subjected to noxious stimulation<span>, cells release ATP, activate P2X2/3, enhance the sensitivity of peripheral receptors and the plasticity of neurons, enhance sensory information transmission, sensitize the central nervous system<span>, and play an important role in the development of VP. However, antagonists possess the pharmacological effect of relieving pain. Therefore, in this review, we summarize the biological functions of P2X2/3 and discuss the intrinsic link between P2X2/3 and VP. Moreover, we focus on the pharmacological effects of P2X2/3 antagonists on VP therapy and provide a theoretical basis for its targeted therapy.</span></span></span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Role and therapeutic target of P2X2/3 receptors in visceral pain\",\"authors\":\"Hong-mei Luo , Jia-rong Ye , Fan-qin Pu , Hong-liang Luo , Wen-jun Zhang\",\"doi\":\"10.1016/j.npep.2023.102355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Visceral pain<span> (VP) is caused by internal organ disease. VP is involved in nerve conduction<span> and related signaling molecules, but its specific pathogenesis has not yet been fully elucidated. Currently, there are no effective methods for treating VP. The role of P2X2/3 in VP has progressed. After visceral organs are subjected to noxious stimulation<span>, cells release ATP, activate P2X2/3, enhance the sensitivity of peripheral receptors and the plasticity of neurons, enhance sensory information transmission, sensitize the central nervous system<span>, and play an important role in the development of VP. However, antagonists possess the pharmacological effect of relieving pain. Therefore, in this review, we summarize the biological functions of P2X2/3 and discuss the intrinsic link between P2X2/3 and VP. Moreover, we focus on the pharmacological effects of P2X2/3 antagonists on VP therapy and provide a theoretical basis for its targeted therapy.</span></span></span></span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143417923000367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417923000367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Role and therapeutic target of P2X2/3 receptors in visceral pain
Visceral pain (VP) is caused by internal organ disease. VP is involved in nerve conduction and related signaling molecules, but its specific pathogenesis has not yet been fully elucidated. Currently, there are no effective methods for treating VP. The role of P2X2/3 in VP has progressed. After visceral organs are subjected to noxious stimulation, cells release ATP, activate P2X2/3, enhance the sensitivity of peripheral receptors and the plasticity of neurons, enhance sensory information transmission, sensitize the central nervous system, and play an important role in the development of VP. However, antagonists possess the pharmacological effect of relieving pain. Therefore, in this review, we summarize the biological functions of P2X2/3 and discuss the intrinsic link between P2X2/3 and VP. Moreover, we focus on the pharmacological effects of P2X2/3 antagonists on VP therapy and provide a theoretical basis for its targeted therapy.