P2X2/3受体在内脏疼痛中的作用及治疗靶点

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hong-mei Luo , Jia-rong Ye , Fan-qin Pu , Hong-liang Luo , Wen-jun Zhang
{"title":"P2X2/3受体在内脏疼痛中的作用及治疗靶点","authors":"Hong-mei Luo ,&nbsp;Jia-rong Ye ,&nbsp;Fan-qin Pu ,&nbsp;Hong-liang Luo ,&nbsp;Wen-jun Zhang","doi":"10.1016/j.npep.2023.102355","DOIUrl":null,"url":null,"abstract":"<div><p>Visceral pain<span> (VP) is caused by internal organ disease. VP is involved in nerve conduction<span> and related signaling molecules, but its specific pathogenesis has not yet been fully elucidated. Currently, there are no effective methods for treating VP. The role of P2X2/3 in VP has progressed. After visceral organs are subjected to noxious stimulation<span>, cells release ATP, activate P2X2/3, enhance the sensitivity of peripheral receptors and the plasticity of neurons, enhance sensory information transmission, sensitize the central nervous system<span>, and play an important role in the development of VP. However, antagonists possess the pharmacological effect of relieving pain. Therefore, in this review, we summarize the biological functions of P2X2/3 and discuss the intrinsic link between P2X2/3 and VP. Moreover, we focus on the pharmacological effects of P2X2/3 antagonists on VP therapy and provide a theoretical basis for its targeted therapy.</span></span></span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Role and therapeutic target of P2X2/3 receptors in visceral pain\",\"authors\":\"Hong-mei Luo ,&nbsp;Jia-rong Ye ,&nbsp;Fan-qin Pu ,&nbsp;Hong-liang Luo ,&nbsp;Wen-jun Zhang\",\"doi\":\"10.1016/j.npep.2023.102355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Visceral pain<span> (VP) is caused by internal organ disease. VP is involved in nerve conduction<span> and related signaling molecules, but its specific pathogenesis has not yet been fully elucidated. Currently, there are no effective methods for treating VP. The role of P2X2/3 in VP has progressed. After visceral organs are subjected to noxious stimulation<span>, cells release ATP, activate P2X2/3, enhance the sensitivity of peripheral receptors and the plasticity of neurons, enhance sensory information transmission, sensitize the central nervous system<span>, and play an important role in the development of VP. However, antagonists possess the pharmacological effect of relieving pain. Therefore, in this review, we summarize the biological functions of P2X2/3 and discuss the intrinsic link between P2X2/3 and VP. Moreover, we focus on the pharmacological effects of P2X2/3 antagonists on VP therapy and provide a theoretical basis for its targeted therapy.</span></span></span></span></p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143417923000367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417923000367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

摘要

内脏疼痛(VP)是由内脏疾病引起的。VP参与神经传导和相关信号分子,但其具体发病机制尚未完全阐明。目前尚无有效的治疗VP的方法。P2X2/3在VP中的作用已取得进展。内脏器官受到伤害性刺激后,细胞释放ATP,激活P2X2/3,增强外周受体的敏感性和神经元的可塑性,增强感觉信息传递,使中枢神经系统敏感,在VP的发展中发挥重要作用。然而,拮抗剂具有止痛的药理作用。因此,在这篇综述中,我们总结了P2X2/3的生物学功能,并讨论了P2X2-3与VP之间的内在联系。此外,我们还重点研究了P2X2/3拮抗剂对VP治疗的药理作用,为其靶向治疗提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Role and therapeutic target of P2X2/3 receptors in visceral pain

Visceral pain (VP) is caused by internal organ disease. VP is involved in nerve conduction and related signaling molecules, but its specific pathogenesis has not yet been fully elucidated. Currently, there are no effective methods for treating VP. The role of P2X2/3 in VP has progressed. After visceral organs are subjected to noxious stimulation, cells release ATP, activate P2X2/3, enhance the sensitivity of peripheral receptors and the plasticity of neurons, enhance sensory information transmission, sensitize the central nervous system, and play an important role in the development of VP. However, antagonists possess the pharmacological effect of relieving pain. Therefore, in this review, we summarize the biological functions of P2X2/3 and discuss the intrinsic link between P2X2/3 and VP. Moreover, we focus on the pharmacological effects of P2X2/3 antagonists on VP therapy and provide a theoretical basis for its targeted therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信