Milirani Das, Guruswami Gurusubramanian, Vikas Kumar Roy
{"title":"Apelin受体拮抗剂(ML221)对成年小鼠睾丸增生、抗氧化系统和甾体生成具有刺激作用","authors":"Milirani Das, Guruswami Gurusubramanian, Vikas Kumar Roy","doi":"10.1016/j.npep.2023.102354","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>The expression of apelin<span> and its receptor (APJ) has been shown in the hypothalamus-pituitary-testicular axis. It has also been suggested apelin and APJ are neuropeptide factors. The presence of apelin and APJ in the </span></span>seminiferous tubules and </span>interstitium<span> might be predicted to act as a local regulator of testicular activity, although the function is not well known in the mice testis. In the present study, we have investigated the effects of APJ, antagonist, ML221 on the </span></span>gonadotropin<span><span> levels, testicular steroidogenesis, proliferation, </span>apoptosis<span> and antioxidant system. Our results showed that inhibition of APJ by ML221 increased the sperm concentration, circulating testosterone, FSH, LH levels and intra-testicular testosterone concentration. Furthermore, ML221 treatment<span><span><span> stimulates the germ cell proliferation and antioxidant system in the testis. The expression of BCL2, </span>AR<span><span> was up-regulated whereas, the expression of BAX and active caspase3 was down-regulated after ML221 treatment. Immunohistocehmical analysis of AR also showed increase abundance in the spermatogonia, primary </span>spermatocytes<span> and Leydig cells of 150 μg/kg dose group. These findings suggest that in adult testis, the apelin system might have an inhibitory role in germ cell proliferation and a stimulatory role in apoptosis. It might also be suggested that the apelin system could be involved in the disposal mechanism for damaged germ cells during </span></span></span>spermatogenesis via the down-regulation of AR.</span></span></span></p></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"101 ","pages":"Article 102354"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apelin receptor antagonist (ML221) treatment has a stimulatory effect on the testicular proliferation, antioxidants system and steroidogenesis in adult mice\",\"authors\":\"Milirani Das, Guruswami Gurusubramanian, Vikas Kumar Roy\",\"doi\":\"10.1016/j.npep.2023.102354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>The expression of apelin<span> and its receptor (APJ) has been shown in the hypothalamus-pituitary-testicular axis. It has also been suggested apelin and APJ are neuropeptide factors. The presence of apelin and APJ in the </span></span>seminiferous tubules and </span>interstitium<span> might be predicted to act as a local regulator of testicular activity, although the function is not well known in the mice testis. In the present study, we have investigated the effects of APJ, antagonist, ML221 on the </span></span>gonadotropin<span><span> levels, testicular steroidogenesis, proliferation, </span>apoptosis<span> and antioxidant system. Our results showed that inhibition of APJ by ML221 increased the sperm concentration, circulating testosterone, FSH, LH levels and intra-testicular testosterone concentration. Furthermore, ML221 treatment<span><span><span> stimulates the germ cell proliferation and antioxidant system in the testis. The expression of BCL2, </span>AR<span><span> was up-regulated whereas, the expression of BAX and active caspase3 was down-regulated after ML221 treatment. Immunohistocehmical analysis of AR also showed increase abundance in the spermatogonia, primary </span>spermatocytes<span> and Leydig cells of 150 μg/kg dose group. These findings suggest that in adult testis, the apelin system might have an inhibitory role in germ cell proliferation and a stimulatory role in apoptosis. It might also be suggested that the apelin system could be involved in the disposal mechanism for damaged germ cells during </span></span></span>spermatogenesis via the down-regulation of AR.</span></span></span></p></div>\",\"PeriodicalId\":19254,\"journal\":{\"name\":\"Neuropeptides\",\"volume\":\"101 \",\"pages\":\"Article 102354\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropeptides\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143417923000355\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropeptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417923000355","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Apelin receptor antagonist (ML221) treatment has a stimulatory effect on the testicular proliferation, antioxidants system and steroidogenesis in adult mice
The expression of apelin and its receptor (APJ) has been shown in the hypothalamus-pituitary-testicular axis. It has also been suggested apelin and APJ are neuropeptide factors. The presence of apelin and APJ in the seminiferous tubules and interstitium might be predicted to act as a local regulator of testicular activity, although the function is not well known in the mice testis. In the present study, we have investigated the effects of APJ, antagonist, ML221 on the gonadotropin levels, testicular steroidogenesis, proliferation, apoptosis and antioxidant system. Our results showed that inhibition of APJ by ML221 increased the sperm concentration, circulating testosterone, FSH, LH levels and intra-testicular testosterone concentration. Furthermore, ML221 treatment stimulates the germ cell proliferation and antioxidant system in the testis. The expression of BCL2, AR was up-regulated whereas, the expression of BAX and active caspase3 was down-regulated after ML221 treatment. Immunohistocehmical analysis of AR also showed increase abundance in the spermatogonia, primary spermatocytes and Leydig cells of 150 μg/kg dose group. These findings suggest that in adult testis, the apelin system might have an inhibitory role in germ cell proliferation and a stimulatory role in apoptosis. It might also be suggested that the apelin system could be involved in the disposal mechanism for damaged germ cells during spermatogenesis via the down-regulation of AR.
期刊介绍:
The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the identification of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems.
The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials.