Sujin Choi, Sang-Hoon Kim, Mi Seon Han, Yoonsun Yoon, Yun-Kyung Kim, Hye-Kyung Cho, Ki Wook Yun, Seung Ha Song, Bin Ahn, Ye Kyung Kim, Sung Hwan Choi, Young June Choe, Heeji Lim, Eun Bee Choi, Kwangwook Kim, Seokhwan Hyeon, Hye Jung Lim, Byung-Chul Kim, Yoo-Kyoung Lee, Eun Hwa Choi, Eui-Cheol Shin, Hyunju Lee
{"title":"SARS-CoV-2 mRNA疫苗在青少年中引发针对组粒变异的持续T细胞反应","authors":"Sujin Choi, Sang-Hoon Kim, Mi Seon Han, Yoonsun Yoon, Yun-Kyung Kim, Hye-Kyung Cho, Ki Wook Yun, Seung Ha Song, Bin Ahn, Ye Kyung Kim, Sung Hwan Choi, Young June Choe, Heeji Lim, Eun Bee Choi, Kwangwook Kim, Seokhwan Hyeon, Hye Jung Lim, Byung-Chul Kim, Yoo-Kyoung Lee, Eun Hwa Choi, Eui-Cheol Shin, Hyunju Lee","doi":"10.4110/in.2023.23.e33","DOIUrl":null,"url":null,"abstract":"<p><p>Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization. However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccine-induced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARS-CoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4<sup>+</sup> T cells exhibited substantial responses against both ancestral and Omicron spike proteins. Notably, CD4<sup>+</sup> T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein. The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.</p>","PeriodicalId":13307,"journal":{"name":"Immune Network","volume":"23 4","pages":"e33"},"PeriodicalIF":4.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3c/42/in-23-e33.PMC10475828.pdf","citationCount":"0","resultStr":"{\"title\":\"SARS-CoV-2 mRNA Vaccine Elicits Sustained T Cell Responses Against the Omicron Variant in Adolescents.\",\"authors\":\"Sujin Choi, Sang-Hoon Kim, Mi Seon Han, Yoonsun Yoon, Yun-Kyung Kim, Hye-Kyung Cho, Ki Wook Yun, Seung Ha Song, Bin Ahn, Ye Kyung Kim, Sung Hwan Choi, Young June Choe, Heeji Lim, Eun Bee Choi, Kwangwook Kim, Seokhwan Hyeon, Hye Jung Lim, Byung-Chul Kim, Yoo-Kyoung Lee, Eun Hwa Choi, Eui-Cheol Shin, Hyunju Lee\",\"doi\":\"10.4110/in.2023.23.e33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization. However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccine-induced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARS-CoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4<sup>+</sup> T cells exhibited substantial responses against both ancestral and Omicron spike proteins. Notably, CD4<sup>+</sup> T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein. The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.</p>\",\"PeriodicalId\":13307,\"journal\":{\"name\":\"Immune Network\",\"volume\":\"23 4\",\"pages\":\"e33\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3c/42/in-23-e33.PMC10475828.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immune Network\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4110/in.2023.23.e33\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immune Network","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4110/in.2023.23.e33","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
SARS-CoV-2 mRNA Vaccine Elicits Sustained T Cell Responses Against the Omicron Variant in Adolescents.
Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization. However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccine-induced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARS-CoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4+ T cells exhibited substantial responses against both ancestral and Omicron spike proteins. Notably, CD4+ T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein. The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.
期刊介绍:
Immune Network publishes novel findings in basic and clinical immunology and aims to provide a medium through which researchers in various fields of immunology can share and connect. The journal focuses on advances and insights into the regulation of the immune system and the immunological mechanisms of various diseases. Research that provides integrated insights into translational immunology is given preference for publication. All submissions are evaluated based on originality, quality, clarity, and brevity