{"title":"给药假结肠双歧杆菌可抑制小鼠结肠血清素的升高并缓解葡聚糖硫酸钠诱导的结肠炎的症状。","authors":"Misa Tatsuoka, Riku Shimada, Fumina Ohsaka, Kei Sonoyama","doi":"10.12938/bmfh.2022-073","DOIUrl":null,"url":null,"abstract":"<p><p>Previous studies suggested that altered gut serotonin (5-HT) signaling is implicated in the pathophysiology of inflammatory bowel disease (IBD). Indeed, 5-HT administration reportedly exacerbated the severity of murine dextran sodium sulfate (DSS)-induced colitis that mimics human IBD. Our recent study suggested that <i>Bifidobacterium pseudolongum</i>, one of the most predominant bifidobacterial species in various mammals, reduces the colonic 5-HT content in mice. The present study thus tested whether the administration of <i>B. pseudolongum</i> prevents DSS-induced colitis in mice. Colitis was induced by administering 3% DSS in drinking water in female BALB/c mice, and <i>B. pseudolongum</i> (10<sup>9</sup> CFU/day) or 5-aminosalicylic acid (5-ASA, 200 mg/kg body weight) was intragastrically administered once daily throughout the experimental period. <i>B. pseudolongum</i> administration reduced body weight loss, diarrhea, fecal bleeding, colon shortening, spleen enlargement, and colon tissue damage and increased colonic mRNA levels of cytokine genes (<i>Il1b</i>, <i>Il6</i>, <i>Il10</i>, and <i>Tnf</i>) almost to an extent similar to 5-ASA administration in DSS-treated mice. <i>B. pseudolongum</i> administration also reduced the increase of colonic 5-HT content, whereas it did not alter the colonic mRNA levels of genes that encode the 5-HT synthesizing enzyme, 5-HT reuptake transporter, 5-HT metabolizing enzyme, and tight junction-associated proteins. We propose that <i>B. pseudolongum</i> is as beneficial against murine DSS-induced colitis as the widely used anti-inflammatory agent 5-ASA. However, further studies are needed to clarify the causal relationship between the reduced colonic 5-HT content and reduced severity of DSS-induced colitis caused by <i>B. pseudolongum</i> administration.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/78/bmfh-42-186.PMC10315192.pdf","citationCount":"0","resultStr":"{\"title\":\"Administration of <i>Bifidobacterium pseudolongum</i> suppresses the increase of colonic serotonin and alleviates symptoms in dextran sodium sulfate-induced colitis in mice.\",\"authors\":\"Misa Tatsuoka, Riku Shimada, Fumina Ohsaka, Kei Sonoyama\",\"doi\":\"10.12938/bmfh.2022-073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Previous studies suggested that altered gut serotonin (5-HT) signaling is implicated in the pathophysiology of inflammatory bowel disease (IBD). Indeed, 5-HT administration reportedly exacerbated the severity of murine dextran sodium sulfate (DSS)-induced colitis that mimics human IBD. Our recent study suggested that <i>Bifidobacterium pseudolongum</i>, one of the most predominant bifidobacterial species in various mammals, reduces the colonic 5-HT content in mice. The present study thus tested whether the administration of <i>B. pseudolongum</i> prevents DSS-induced colitis in mice. Colitis was induced by administering 3% DSS in drinking water in female BALB/c mice, and <i>B. pseudolongum</i> (10<sup>9</sup> CFU/day) or 5-aminosalicylic acid (5-ASA, 200 mg/kg body weight) was intragastrically administered once daily throughout the experimental period. <i>B. pseudolongum</i> administration reduced body weight loss, diarrhea, fecal bleeding, colon shortening, spleen enlargement, and colon tissue damage and increased colonic mRNA levels of cytokine genes (<i>Il1b</i>, <i>Il6</i>, <i>Il10</i>, and <i>Tnf</i>) almost to an extent similar to 5-ASA administration in DSS-treated mice. <i>B. pseudolongum</i> administration also reduced the increase of colonic 5-HT content, whereas it did not alter the colonic mRNA levels of genes that encode the 5-HT synthesizing enzyme, 5-HT reuptake transporter, 5-HT metabolizing enzyme, and tight junction-associated proteins. We propose that <i>B. pseudolongum</i> is as beneficial against murine DSS-induced colitis as the widely used anti-inflammatory agent 5-ASA. However, further studies are needed to clarify the causal relationship between the reduced colonic 5-HT content and reduced severity of DSS-induced colitis caused by <i>B. pseudolongum</i> administration.</p>\",\"PeriodicalId\":8867,\"journal\":{\"name\":\"Bioscience of Microbiota, Food and Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/93/78/bmfh-42-186.PMC10315192.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience of Microbiota, Food and Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12938/bmfh.2022-073\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience of Microbiota, Food and Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12938/bmfh.2022-073","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Administration of Bifidobacterium pseudolongum suppresses the increase of colonic serotonin and alleviates symptoms in dextran sodium sulfate-induced colitis in mice.
Previous studies suggested that altered gut serotonin (5-HT) signaling is implicated in the pathophysiology of inflammatory bowel disease (IBD). Indeed, 5-HT administration reportedly exacerbated the severity of murine dextran sodium sulfate (DSS)-induced colitis that mimics human IBD. Our recent study suggested that Bifidobacterium pseudolongum, one of the most predominant bifidobacterial species in various mammals, reduces the colonic 5-HT content in mice. The present study thus tested whether the administration of B. pseudolongum prevents DSS-induced colitis in mice. Colitis was induced by administering 3% DSS in drinking water in female BALB/c mice, and B. pseudolongum (109 CFU/day) or 5-aminosalicylic acid (5-ASA, 200 mg/kg body weight) was intragastrically administered once daily throughout the experimental period. B. pseudolongum administration reduced body weight loss, diarrhea, fecal bleeding, colon shortening, spleen enlargement, and colon tissue damage and increased colonic mRNA levels of cytokine genes (Il1b, Il6, Il10, and Tnf) almost to an extent similar to 5-ASA administration in DSS-treated mice. B. pseudolongum administration also reduced the increase of colonic 5-HT content, whereas it did not alter the colonic mRNA levels of genes that encode the 5-HT synthesizing enzyme, 5-HT reuptake transporter, 5-HT metabolizing enzyme, and tight junction-associated proteins. We propose that B. pseudolongum is as beneficial against murine DSS-induced colitis as the widely used anti-inflammatory agent 5-ASA. However, further studies are needed to clarify the causal relationship between the reduced colonic 5-HT content and reduced severity of DSS-induced colitis caused by B. pseudolongum administration.
期刊介绍:
Bioscience of Microbiota, Food and Health (BMFH) is a peer-reviewed scientific journal with a specific area of focus: intestinal microbiota of human and animals, lactic acid bacteria (LAB) and food immunology and food function. BMFH contains Full papers, Notes, Reviews and Letters to the editor in all areas dealing with intestinal microbiota, LAB and food immunology and food function. BMFH takes a multidisciplinary approach and focuses on a broad spectrum of issues.