Yimin Zhao, Xiang Liu, Jianbin Wang, Yu Nie, Mengjiao Huang, Li Zhang, Yao Xiao, Zhenhua Zhang, Shurong Zhou
{"title":"真菌病原体通过物种异步性增加群落的时间稳定性,而不考虑营养施肥。","authors":"Yimin Zhao, Xiang Liu, Jianbin Wang, Yu Nie, Mengjiao Huang, Li Zhang, Yao Xiao, Zhenhua Zhang, Shurong Zhou","doi":"10.1002/ecy.4166","DOIUrl":null,"url":null,"abstract":"<p>Natural enemies and their interaction with host nutrient availability influence plant population dynamics, community structure, and ecosystem functions. However, the way in which these factors influence patterns of community stability, as well as the direct and indirect processes underlying that stability, remains unclear. Here, we investigated the separate and interactive roles of fungal/oomycete pathogens and nutrient fertilization on the temporal stability of community biomass and the potential mechanisms using a factorial experiment in an alpine meadow. We found that fungal pathogen exclusion reduced community temporal stability mainly through decreasing species asynchrony, while fertilization tended to reduce community temporal stability by decreasing species stability. However, there was no interaction between pathogen exclusion and nutrient fertilization. These effects were largely due to the direct effects of the treatments on plant biomass and not due to indirect effects mediated through plant diversity. Our findings highlight the need for a multitrophic perspective in field studies examining ecosystem stability.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"104 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fungal pathogens increase community temporal stability through species asynchrony regardless of nutrient fertilization\",\"authors\":\"Yimin Zhao, Xiang Liu, Jianbin Wang, Yu Nie, Mengjiao Huang, Li Zhang, Yao Xiao, Zhenhua Zhang, Shurong Zhou\",\"doi\":\"10.1002/ecy.4166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Natural enemies and their interaction with host nutrient availability influence plant population dynamics, community structure, and ecosystem functions. However, the way in which these factors influence patterns of community stability, as well as the direct and indirect processes underlying that stability, remains unclear. Here, we investigated the separate and interactive roles of fungal/oomycete pathogens and nutrient fertilization on the temporal stability of community biomass and the potential mechanisms using a factorial experiment in an alpine meadow. We found that fungal pathogen exclusion reduced community temporal stability mainly through decreasing species asynchrony, while fertilization tended to reduce community temporal stability by decreasing species stability. However, there was no interaction between pathogen exclusion and nutrient fertilization. These effects were largely due to the direct effects of the treatments on plant biomass and not due to indirect effects mediated through plant diversity. Our findings highlight the need for a multitrophic perspective in field studies examining ecosystem stability.</p>\",\"PeriodicalId\":11484,\"journal\":{\"name\":\"Ecology\",\"volume\":\"104 11\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4166\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4166","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Fungal pathogens increase community temporal stability through species asynchrony regardless of nutrient fertilization
Natural enemies and their interaction with host nutrient availability influence plant population dynamics, community structure, and ecosystem functions. However, the way in which these factors influence patterns of community stability, as well as the direct and indirect processes underlying that stability, remains unclear. Here, we investigated the separate and interactive roles of fungal/oomycete pathogens and nutrient fertilization on the temporal stability of community biomass and the potential mechanisms using a factorial experiment in an alpine meadow. We found that fungal pathogen exclusion reduced community temporal stability mainly through decreasing species asynchrony, while fertilization tended to reduce community temporal stability by decreasing species stability. However, there was no interaction between pathogen exclusion and nutrient fertilization. These effects were largely due to the direct effects of the treatments on plant biomass and not due to indirect effects mediated through plant diversity. Our findings highlight the need for a multitrophic perspective in field studies examining ecosystem stability.
期刊介绍:
Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.