靶向超突变作为一种生存策略:一种理论方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Seymour Garte
{"title":"靶向超突变作为一种生存策略:一种理论方法","authors":"Seymour Garte","doi":"10.1007/s10441-023-09471-9","DOIUrl":null,"url":null,"abstract":"<div><p>Targeted hypermutation has proven to be a useful survival strategy for bacteria under severe stress and is also used by multicellular organisms in specific instances such as the mammalian immune system. This might appear surprising, given the generally observed deleterious effects of poor replication fidelity/high mutation rate. A previous theoretical model designed to explore the role of replication fidelity in the origin of life was applied to a simulated hypermutation scenario. The results confirmed that the same model is useful for analyzing hypermutation and can predict the effects of the same parameters (survival probability, replication fidelity, mutation effect, and others) on the survival of cellular populations undergoing hypermutation as a result of severe stress.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeted Hypermutation as a Survival Strategy: A Theoretical Approach\",\"authors\":\"Seymour Garte\",\"doi\":\"10.1007/s10441-023-09471-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Targeted hypermutation has proven to be a useful survival strategy for bacteria under severe stress and is also used by multicellular organisms in specific instances such as the mammalian immune system. This might appear surprising, given the generally observed deleterious effects of poor replication fidelity/high mutation rate. A previous theoretical model designed to explore the role of replication fidelity in the origin of life was applied to a simulated hypermutation scenario. The results confirmed that the same model is useful for analyzing hypermutation and can predict the effects of the same parameters (survival probability, replication fidelity, mutation effect, and others) on the survival of cellular populations undergoing hypermutation as a result of severe stress.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10441-023-09471-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-023-09471-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

靶向超突变已被证明是细菌在严重压力下的一种有用的生存策略,也被多细胞生物在哺乳动物免疫系统等特定情况下使用。考虑到通常观察到的低复制保真度/高突变率的有害影响,这可能看起来令人惊讶。先前的理论模型旨在探索复制保真度在生命起源中的作用,并应用于模拟的超突变情景。结果证实,相同的模型对于分析高突变是有用的,并且可以预测相同参数(生存概率、复制保真度、突变效应等)对由于严重压力而经历高突变的细胞群体的生存的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Targeted Hypermutation as a Survival Strategy: A Theoretical Approach

Targeted Hypermutation as a Survival Strategy: A Theoretical Approach

Targeted hypermutation has proven to be a useful survival strategy for bacteria under severe stress and is also used by multicellular organisms in specific instances such as the mammalian immune system. This might appear surprising, given the generally observed deleterious effects of poor replication fidelity/high mutation rate. A previous theoretical model designed to explore the role of replication fidelity in the origin of life was applied to a simulated hypermutation scenario. The results confirmed that the same model is useful for analyzing hypermutation and can predict the effects of the same parameters (survival probability, replication fidelity, mutation effect, and others) on the survival of cellular populations undergoing hypermutation as a result of severe stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信