泛冠状病毒CRISPR-CasRx效应系统显著降低HCoV-OC43、HCoV-229E和SARS-CoV-2的活价

IF 3.7 4区 生物学 Q2 GENETICS & HEREDITY
Cathryn M Mayes, Joshua L Santarpia
{"title":"泛冠状病毒CRISPR-CasRx效应系统显著降低HCoV-OC43、HCoV-229E和SARS-CoV-2的活价","authors":"Cathryn M Mayes,&nbsp;Joshua L Santarpia","doi":"10.1089/crispr.2022.0095","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-based technology has become widely used as an antiviral strategy, including as a broad-spectrum human coronavirus (HCoV) therapeutic. In this work, we have designed a CRISPR-CasRx effector system with guide RNAs (gRNAs) that are cross-reactive among several HCoV species. We tested the efficacy of this pan-coronavirus effector system by evaluating the reduction in viral viability associated with different CRISPR targets in HCoV-OC43, HCoV-229E, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We determined that several CRISPR targets significantly reduce viral titer, despite the presence of single nucleotide polymorphisms in the gRNA when compared with a non-targeting, negative control gRNA. CRISPR targets reduced viral titer between 85% and >99% in HCoV-OC43, between 78% and >99% in HCoV-229E, and between 70% and 94% in SARS-CoV-2 when compared with an untreated virus control. These data establish a proof-of-concept for a pan-coronavirus CRISPR effector system that is capable of reducing viable virus in both Risk Group 2 and Risk Group 3 HCoV pathogens.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457650/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pan-Coronavirus CRISPR-CasRx Effector System Significantly Reduces Viable Titer in HCoV-OC43, HCoV-229E, and SARS-CoV-2.\",\"authors\":\"Cathryn M Mayes,&nbsp;Joshua L Santarpia\",\"doi\":\"10.1089/crispr.2022.0095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>CRISPR-based technology has become widely used as an antiviral strategy, including as a broad-spectrum human coronavirus (HCoV) therapeutic. In this work, we have designed a CRISPR-CasRx effector system with guide RNAs (gRNAs) that are cross-reactive among several HCoV species. We tested the efficacy of this pan-coronavirus effector system by evaluating the reduction in viral viability associated with different CRISPR targets in HCoV-OC43, HCoV-229E, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We determined that several CRISPR targets significantly reduce viral titer, despite the presence of single nucleotide polymorphisms in the gRNA when compared with a non-targeting, negative control gRNA. CRISPR targets reduced viral titer between 85% and >99% in HCoV-OC43, between 78% and >99% in HCoV-229E, and between 70% and 94% in SARS-CoV-2 when compared with an untreated virus control. These data establish a proof-of-concept for a pan-coronavirus CRISPR effector system that is capable of reducing viable virus in both Risk Group 2 and Risk Group 3 HCoV pathogens.</p>\",\"PeriodicalId\":54232,\"journal\":{\"name\":\"CRISPR Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457650/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CRISPR Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/crispr.2022.0095\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CRISPR Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/crispr.2022.0095","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

基于crispr的技术已被广泛用于抗病毒策略,包括作为广谱人类冠状病毒(HCoV)的治疗方法。在这项工作中,我们设计了一个CRISPR-CasRx效应系统,其引导rna (grna)在几种HCoV物种中具有交叉反应性。我们通过评估不同CRISPR靶点在HCoV-OC43、HCoV-229E和严重急性呼吸综合征冠状病毒2 (SARS-CoV-2)中与病毒活力相关的降低来测试该泛冠状病毒效应系统的有效性。我们确定,与非靶向的阴性对照gRNA相比,尽管gRNA中存在单核苷酸多态性,但几种CRISPR靶标显著降低了病毒滴度。与未经治疗的病毒对照相比,CRISPR靶标使HCoV-OC43的病毒滴度降低85%至>99%,HCoV-229E的病毒滴度降低78%至>99%,SARS-CoV-2的病毒滴度降低70%至94%。这些数据为泛冠状病毒CRISPR效应系统建立了概念验证,该系统能够减少风险组2和风险组3 HCoV病原体中的活病毒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pan-Coronavirus CRISPR-CasRx Effector System Significantly Reduces Viable Titer in HCoV-OC43, HCoV-229E, and SARS-CoV-2.

Pan-Coronavirus CRISPR-CasRx Effector System Significantly Reduces Viable Titer in HCoV-OC43, HCoV-229E, and SARS-CoV-2.

Pan-Coronavirus CRISPR-CasRx Effector System Significantly Reduces Viable Titer in HCoV-OC43, HCoV-229E, and SARS-CoV-2.

Pan-Coronavirus CRISPR-CasRx Effector System Significantly Reduces Viable Titer in HCoV-OC43, HCoV-229E, and SARS-CoV-2.

CRISPR-based technology has become widely used as an antiviral strategy, including as a broad-spectrum human coronavirus (HCoV) therapeutic. In this work, we have designed a CRISPR-CasRx effector system with guide RNAs (gRNAs) that are cross-reactive among several HCoV species. We tested the efficacy of this pan-coronavirus effector system by evaluating the reduction in viral viability associated with different CRISPR targets in HCoV-OC43, HCoV-229E, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We determined that several CRISPR targets significantly reduce viral titer, despite the presence of single nucleotide polymorphisms in the gRNA when compared with a non-targeting, negative control gRNA. CRISPR targets reduced viral titer between 85% and >99% in HCoV-OC43, between 78% and >99% in HCoV-229E, and between 70% and 94% in SARS-CoV-2 when compared with an untreated virus control. These data establish a proof-of-concept for a pan-coronavirus CRISPR effector system that is capable of reducing viable virus in both Risk Group 2 and Risk Group 3 HCoV pathogens.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CRISPR Journal
CRISPR Journal Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
6.30
自引率
2.70%
发文量
76
期刊介绍: In recognition of this extraordinary scientific and technological era, Mary Ann Liebert, Inc., publishers recently announced the creation of The CRISPR Journal -- an international, multidisciplinary peer-reviewed journal publishing outstanding research on the myriad applications and underlying technology of CRISPR. Debuting in 2018, The CRISPR Journal will be published online and in print with flexible open access options, providing a high-profile venue for groundbreaking research, as well as lively and provocative commentary, analysis, and debate. The CRISPR Journal adds an exciting and dynamic component to the Mary Ann Liebert, Inc. portfolio, which includes GEN (Genetic Engineering & Biotechnology News) and more than 80 leading peer-reviewed journals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信