用于多地区临床试验的贝叶斯联合模型。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nathan W Bean, Joseph G Ibrahim, Matthew A Psioda
{"title":"用于多地区临床试验的贝叶斯联合模型。","authors":"Nathan W Bean, Joseph G Ibrahim, Matthew A Psioda","doi":"10.1093/biostatistics/kxad023","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the global drug development process. To address potential challenges with MRCTs, the International Council for Harmonisation released the E17 guidance document which suggests the use of statistical methods that utilize information borrowing across regions if regional sample sizes are small. We develop an approach that allows for information borrowing via Bayesian model averaging in the context of a joint analysis of survival and longitudinal data from MRCTs. In this novel application of joint models to MRCTs, we use Laplace's method to integrate over subject-specific random effects and to approximate posterior distributions for region-specific treatment effects on the time-to-event outcome. Through simulation studies, we demonstrate that the joint modeling approach can result in an increased rejection rate when testing the global treatment effect compared with methods that analyze survival data alone. We then apply the proposed approach to data from a cardiovascular outcomes MRCT.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247186/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian joint models for multi-regional clinical trials.\",\"authors\":\"Nathan W Bean, Joseph G Ibrahim, Matthew A Psioda\",\"doi\":\"10.1093/biostatistics/kxad023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the global drug development process. To address potential challenges with MRCTs, the International Council for Harmonisation released the E17 guidance document which suggests the use of statistical methods that utilize information borrowing across regions if regional sample sizes are small. We develop an approach that allows for information borrowing via Bayesian model averaging in the context of a joint analysis of survival and longitudinal data from MRCTs. In this novel application of joint models to MRCTs, we use Laplace's method to integrate over subject-specific random effects and to approximate posterior distributions for region-specific treatment effects on the time-to-event outcome. Through simulation studies, we demonstrate that the joint modeling approach can result in an increased rejection rate when testing the global treatment effect compared with methods that analyze survival data alone. We then apply the proposed approach to data from a cardiovascular outcomes MRCT.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247186/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxad023\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,多地区临床试验(MRCT)在制药行业越来越受欢迎,因为它能够加快全球药物开发进程。为了应对 MRCT 可能面临的挑战,国际协调理事会发布了 E17 指导文件,建议在地区样本量较小的情况下,使用跨地区信息借用的统计方法。我们开发了一种方法,在对来自 MRCT 的生存和纵向数据进行联合分析时,通过贝叶斯模型平均法实现信息借用。在这种将联合模型应用于 MRCT 的新方法中,我们使用拉普拉斯方法对特定受试者的随机效应进行整合,并逼近特定地区治疗对时间到事件结果影响的后验分布。通过模拟研究,我们证明与单独分析生存数据的方法相比,联合建模方法在测试总体治疗效果时可提高拒绝率。然后,我们将提出的方法应用于心血管结果 MRCT 数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian joint models for multi-regional clinical trials.

In recent years, multi-regional clinical trials (MRCTs) have increased in popularity in the pharmaceutical industry due to their ability to accelerate the global drug development process. To address potential challenges with MRCTs, the International Council for Harmonisation released the E17 guidance document which suggests the use of statistical methods that utilize information borrowing across regions if regional sample sizes are small. We develop an approach that allows for information borrowing via Bayesian model averaging in the context of a joint analysis of survival and longitudinal data from MRCTs. In this novel application of joint models to MRCTs, we use Laplace's method to integrate over subject-specific random effects and to approximate posterior distributions for region-specific treatment effects on the time-to-event outcome. Through simulation studies, we demonstrate that the joint modeling approach can result in an increased rejection rate when testing the global treatment effect compared with methods that analyze survival data alone. We then apply the proposed approach to data from a cardiovascular outcomes MRCT.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信