脊髓间神经元:运动控制中的多样性和连接性

IF 12.1 1区 医学 Q1 NEUROSCIENCES
Annual review of neuroscience Pub Date : 2023-07-10 Epub Date: 2023-02-28 DOI:10.1146/annurev-neuro-083122-025325
Mohini Sengupta, Martha W Bagnall
{"title":"脊髓间神经元:运动控制中的多样性和连接性","authors":"Mohini Sengupta, Martha W Bagnall","doi":"10.1146/annurev-neuro-083122-025325","DOIUrl":null,"url":null,"abstract":"<p><p>The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.</p>","PeriodicalId":8008,"journal":{"name":"Annual review of neuroscience","volume":"46 ","pages":"79-99"},"PeriodicalIF":12.1000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580138/pdf/","citationCount":"0","resultStr":"{\"title\":\"Spinal Interneurons: Diversity and Connectivity in Motor Control.\",\"authors\":\"Mohini Sengupta, Martha W Bagnall\",\"doi\":\"10.1146/annurev-neuro-083122-025325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.</p>\",\"PeriodicalId\":8008,\"journal\":{\"name\":\"Annual review of neuroscience\",\"volume\":\"46 \",\"pages\":\"79-99\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2023-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580138/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-neuro-083122-025325\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-neuro-083122-025325","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脊髓是运动固有网络的所在地。脊髓与大脑完全断开的动物,只要提供一些兴奋驱动力,如物理、药物或电刺激,仍能产生有节奏、有模式的运动。然而,要确定产生这些运动的基本电路仍是一项挑战,因为脊髓包含多种神经元类别,而这些神经元的相互连接模式仍不甚明了。因此,运动的计算模型依赖于有关脊髓神经元网络元素特征和连接性的未经测试的假设。在这篇综述中,我们考虑了脊髓神经元的类别、它们之间的互连性以及它们沿脊髓长轴的回路连接的重要性。我们提出了几条分析思路,以求对脊髓网络有一个明确的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spinal Interneurons: Diversity and Connectivity in Motor Control.

The spinal cord is home to the intrinsic networks for locomotion. An animal in which the spinal cord has been fully severed from the brain can still produce rhythmic, patterned locomotor movements as long as some excitatory drive is provided, such as physical, pharmacological, or electrical stimuli. Yet it remains a challenge to define the underlying circuitry that produces these movements because the spinal cord contains a wide variety of neuron classes whose patterns of interconnectivity are still poorly understood. Computational models of locomotion accordingly rely on untested assumptions about spinal neuron network element identity and connectivity. In this review, we consider the classes of spinal neurons, their interconnectivity, and the significance of their circuit connections along the long axis of the spinal cord. We suggest several lines of analysis to move toward a definitive understanding of the spinal network.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of neuroscience
Annual review of neuroscience 医学-神经科学
CiteScore
25.30
自引率
0.70%
发文量
29
期刊介绍: The Annual Review of Neuroscience is a well-established and comprehensive journal in the field of neuroscience, with a rich history and a commitment to open access and scholarly communication. The journal has been in publication since 1978, providing a long-standing source of authoritative reviews in neuroscience. The Annual Review of Neuroscience encompasses a wide range of topics within neuroscience, including but not limited to: Molecular and cellular neuroscience, Neurogenetics, Developmental neuroscience, Neural plasticity and repair, Systems neuroscience, Cognitive neuroscience, Behavioral neuroscience, Neurobiology of disease. Occasionally, the journal also features reviews on the history of neuroscience and ethical considerations within the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信