M C Lorenzo-Lozano, A L Blázquez-Manzanera, J A Carnicero
{"title":"肾脏时钟如何工作:基于人群数据组的eGFR昼夜节律模式。","authors":"M C Lorenzo-Lozano, A L Blázquez-Manzanera, J A Carnicero","doi":"10.1007/s13105-023-00948-2","DOIUrl":null,"url":null,"abstract":"<p><p>A circadian regulation of renal function it has been described in the last few years. An intradaily variation in glomerular filtration rate (eGFR) has also been discovered at the individual level. The aim of this study was to check if there exists a circadian pattern of eGFR at population data group level and to compare the population results with those described at individual level. We have studied a total of 446,441 samples analysed in the emergency laboratories of two Spanish hospitals between January 2015 and December 2019. We selected all the records of eGFR values between 60 and 140 mL/min/1.73 m<sup>2</sup> using CKD-EPI formula from patients between 18 and 85 years. The intradaily intrinsic eGFR pattern was computed using the extraction time of day in four nested mixed linear and sinusoidal regression models. All models showed an intradaily eGFR pattern, but the estimated model coefficients differed depending on whether age was included. The inclusion of age improved the performance of the model. In this model, the acrophase occurred at 7:46 h. We describe the distribution of eGFR values depending on the time in two different populations. This distribution is adjusted to a circadian rhythm that behaves similarly to the individual rhythm. This pattern is similar in each of the years studied from each hospital as well as between both hospitals. The results found suggest the incorporation of the concept of \"population circadian rhythm\" into the scientific world.</p>","PeriodicalId":16779,"journal":{"name":"Journal of physiology and biochemistry","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How kidney clock works: circadian pattern of eGFR based on a population data group.\",\"authors\":\"M C Lorenzo-Lozano, A L Blázquez-Manzanera, J A Carnicero\",\"doi\":\"10.1007/s13105-023-00948-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A circadian regulation of renal function it has been described in the last few years. An intradaily variation in glomerular filtration rate (eGFR) has also been discovered at the individual level. The aim of this study was to check if there exists a circadian pattern of eGFR at population data group level and to compare the population results with those described at individual level. We have studied a total of 446,441 samples analysed in the emergency laboratories of two Spanish hospitals between January 2015 and December 2019. We selected all the records of eGFR values between 60 and 140 mL/min/1.73 m<sup>2</sup> using CKD-EPI formula from patients between 18 and 85 years. The intradaily intrinsic eGFR pattern was computed using the extraction time of day in four nested mixed linear and sinusoidal regression models. All models showed an intradaily eGFR pattern, but the estimated model coefficients differed depending on whether age was included. The inclusion of age improved the performance of the model. In this model, the acrophase occurred at 7:46 h. We describe the distribution of eGFR values depending on the time in two different populations. This distribution is adjusted to a circadian rhythm that behaves similarly to the individual rhythm. This pattern is similar in each of the years studied from each hospital as well as between both hospitals. The results found suggest the incorporation of the concept of \\\"population circadian rhythm\\\" into the scientific world.</p>\",\"PeriodicalId\":16779,\"journal\":{\"name\":\"Journal of physiology and biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of physiology and biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13105-023-00948-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of physiology and biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13105-023-00948-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
How kidney clock works: circadian pattern of eGFR based on a population data group.
A circadian regulation of renal function it has been described in the last few years. An intradaily variation in glomerular filtration rate (eGFR) has also been discovered at the individual level. The aim of this study was to check if there exists a circadian pattern of eGFR at population data group level and to compare the population results with those described at individual level. We have studied a total of 446,441 samples analysed in the emergency laboratories of two Spanish hospitals between January 2015 and December 2019. We selected all the records of eGFR values between 60 and 140 mL/min/1.73 m2 using CKD-EPI formula from patients between 18 and 85 years. The intradaily intrinsic eGFR pattern was computed using the extraction time of day in four nested mixed linear and sinusoidal regression models. All models showed an intradaily eGFR pattern, but the estimated model coefficients differed depending on whether age was included. The inclusion of age improved the performance of the model. In this model, the acrophase occurred at 7:46 h. We describe the distribution of eGFR values depending on the time in two different populations. This distribution is adjusted to a circadian rhythm that behaves similarly to the individual rhythm. This pattern is similar in each of the years studied from each hospital as well as between both hospitals. The results found suggest the incorporation of the concept of "population circadian rhythm" into the scientific world.
期刊介绍:
The Journal of Physiology and Biochemistry publishes original research articles and reviews describing relevant new observations on molecular, biochemical and cellular mechanisms involved in human physiology. All areas of the physiology are covered. Special emphasis is placed on the integration of those levels in the whole-organism. The Journal of Physiology and Biochemistry also welcomes articles on molecular nutrition and metabolism studies, and works related to the genomic or proteomic bases of the physiological functions. Descriptive manuscripts about physiological/biochemical processes or clinical manuscripts will not be considered. The journal will not accept manuscripts testing effects of animal or plant extracts.