Wistar雄性大鼠接受含有/不含有维生素D的正常食物/高热量饮食时骨髓间充质干细胞的衰老。

IF 4.4 4区 医学 Q1 GERIATRICS & GERONTOLOGY
Biogerontology Pub Date : 2023-10-01 Epub Date: 2023-08-22 DOI:10.1007/s10522-023-10048-9
Fahimeh Agh, Seyed Hadi Mousavi, Naheed Aryaeian, Fatemehsadat Amiri, Mohammad Reza Jalilvand, Motahareh Hasani, Farhad Vahid, Fatemeh Sepahvand, Mehran Vosugh
{"title":"Wistar雄性大鼠接受含有/不含有维生素D的正常食物/高热量饮食时骨髓间充质干细胞的衰老。","authors":"Fahimeh Agh, Seyed Hadi Mousavi, Naheed Aryaeian, Fatemehsadat Amiri, Mohammad Reza Jalilvand, Motahareh Hasani, Farhad Vahid, Fatemeh Sepahvand, Mehran Vosugh","doi":"10.1007/s10522-023-10048-9","DOIUrl":null,"url":null,"abstract":"<p><p>Bone marrow mesenchymal stem cells (BM-MSCs) have a momentous function in the composition of the bone marrow microenvironment because of their many valuable properties and abilities, such as immunomodulation and hematopoiesis. The features and actions of MSCs are influenced by senescence, which may be affected by various factors such as nutritional/micronutrients status, e.g., vitamin D. This study aimed to examine the effects of a high-calorie diet (HCD) with/without vitamin D on BM-MSCs senescence. In the first phase, 48 middle-aged rats were fed a normal chow diet (NCD, n = 24) and an HCD (n = 24) for 26 weeks. Afterward, the rats in each group were randomly divided into three equal subgroups. Immediately, eight-rat from each diet group were sacrificed to assess the HCD effects on the first phase measurements. In the second phase, the remaining 4 groups of rats were fed either NCD or HCD with (6 IU/g) or without vitamin D (standard intake: 1 IU/g); in other words, in this phase, the animals were fed (a) NCD, (b) NCD plus vitamin D, (c) HCD, and (d) HCD plus vitamin D for 4 months. BM-MSCs were isolated and evaluated for P16<sup>INK4a</sup>, P38 MAPK, and Bmi-1 gene expression, reactive oxygen species (ROS) levels, SA-β-gal activity, and cell cycle profile at the end of both phases. After 26 weeks (first phase), the ROS level, SA-β-gal-positive cells, and cells in the G1 phase were significantly higher in HCD-fed rats than in NCD-fed ones (P < 0.05). HCD prescription did not significantly affect cells in the S and G2 phases (p > 0.05). Compared with the NCD-fed animals, P16<sup>INK4a</sup> and P38 MAPK gene expression were up-regulated in the HCD-fed animals; also, Bmi-1 gene expression was down-regulated (P < 0.05). BM-MSCs from vitamin D-treated rats (second phase) exhibited reduced mRNA levels of P16<sup>INK4a</sup> and P38 MAPK genes and increased Bmi-1 mRNA levels (all P < 0.05). Vitamin D prescription also declined the percentage of SA-β-gal-positive cells, ROS levels, and the cells in the G1 phase and increased the cells in the S phase in both NCD and HCD-fed animals (P < 0.05). The reduction of the cells in the G2 phase in rats fed with an NCD plus vitamin D was statistically non-significant (P = 0.128) and significant in HCD plus vitamin D rats (P = 0.002). HCD accelerates BM-MSCs senescence, and vitamin D reduces BM-MSCs senescence biomarkers.</p>","PeriodicalId":8909,"journal":{"name":"Biogerontology","volume":"24 5","pages":"801-812"},"PeriodicalIF":4.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Senescence of bone marrow mesenchymal stem cells in Wistar male rats receiving normal chow/high-calorie diets with/without vitamin D.\",\"authors\":\"Fahimeh Agh, Seyed Hadi Mousavi, Naheed Aryaeian, Fatemehsadat Amiri, Mohammad Reza Jalilvand, Motahareh Hasani, Farhad Vahid, Fatemeh Sepahvand, Mehran Vosugh\",\"doi\":\"10.1007/s10522-023-10048-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bone marrow mesenchymal stem cells (BM-MSCs) have a momentous function in the composition of the bone marrow microenvironment because of their many valuable properties and abilities, such as immunomodulation and hematopoiesis. The features and actions of MSCs are influenced by senescence, which may be affected by various factors such as nutritional/micronutrients status, e.g., vitamin D. This study aimed to examine the effects of a high-calorie diet (HCD) with/without vitamin D on BM-MSCs senescence. In the first phase, 48 middle-aged rats were fed a normal chow diet (NCD, n = 24) and an HCD (n = 24) for 26 weeks. Afterward, the rats in each group were randomly divided into three equal subgroups. Immediately, eight-rat from each diet group were sacrificed to assess the HCD effects on the first phase measurements. In the second phase, the remaining 4 groups of rats were fed either NCD or HCD with (6 IU/g) or without vitamin D (standard intake: 1 IU/g); in other words, in this phase, the animals were fed (a) NCD, (b) NCD plus vitamin D, (c) HCD, and (d) HCD plus vitamin D for 4 months. BM-MSCs were isolated and evaluated for P16<sup>INK4a</sup>, P38 MAPK, and Bmi-1 gene expression, reactive oxygen species (ROS) levels, SA-β-gal activity, and cell cycle profile at the end of both phases. After 26 weeks (first phase), the ROS level, SA-β-gal-positive cells, and cells in the G1 phase were significantly higher in HCD-fed rats than in NCD-fed ones (P < 0.05). HCD prescription did not significantly affect cells in the S and G2 phases (p > 0.05). Compared with the NCD-fed animals, P16<sup>INK4a</sup> and P38 MAPK gene expression were up-regulated in the HCD-fed animals; also, Bmi-1 gene expression was down-regulated (P < 0.05). BM-MSCs from vitamin D-treated rats (second phase) exhibited reduced mRNA levels of P16<sup>INK4a</sup> and P38 MAPK genes and increased Bmi-1 mRNA levels (all P < 0.05). Vitamin D prescription also declined the percentage of SA-β-gal-positive cells, ROS levels, and the cells in the G1 phase and increased the cells in the S phase in both NCD and HCD-fed animals (P < 0.05). The reduction of the cells in the G2 phase in rats fed with an NCD plus vitamin D was statistically non-significant (P = 0.128) and significant in HCD plus vitamin D rats (P = 0.002). HCD accelerates BM-MSCs senescence, and vitamin D reduces BM-MSCs senescence biomarkers.</p>\",\"PeriodicalId\":8909,\"journal\":{\"name\":\"Biogerontology\",\"volume\":\"24 5\",\"pages\":\"801-812\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biogerontology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10522-023-10048-9\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogerontology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10522-023-10048-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨髓间充质干细胞(BM-MSCs)由于其许多有价值的特性和能力,如免疫调节和造血,在骨髓微环境的组成中具有重要作用。骨髓间充质干细胞的特征和作用受到衰老的影响,衰老可能受到各种因素的影响,如营养/微量营养素状况,如维生素D。本研究旨在检验含/不含维生素D的高热量饮食(HCD)对骨髓间充分干细胞衰老的影响。在第一阶段,48只中年大鼠被喂食正常饮食(NCD = 24)和HCD(n = 24)26周。然后,将每组大鼠随机分为三个相等的亚组。立即处死每个饮食组的8只大鼠,以评估HCD对第一阶段测量的影响。在第二阶段,其余4组大鼠喂食含(6IU/g)或不含维生素D的NCD或HCD(标准摄入量:1IU/g);换句话说,在该阶段,动物被喂食(a)NCD,(b)NCD加维生素D,(c)HCD,和(D)HCD加维生素D 4个月。分离BM-MSCs并评估P16INK4a、P38MAPK和Bmi-1基因表达、活性氧(ROS)水平、SA-β-gal活性和两个阶段结束时的细胞周期特征。26周(第一期)后,HCD喂养大鼠的ROS水平、SA-β-gal阳性细胞和G1期细胞均显著高于NCD喂养的大鼠(P  与NCD喂养动物相比,HCD喂养动物P16INK4a和P38MAPK基因表达上调;Bmi-1基因表达下调(P INK4a和P38MAPK基因表达,Bmi-1mRNA水平升高(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Senescence of bone marrow mesenchymal stem cells in Wistar male rats receiving normal chow/high-calorie diets with/without vitamin D.

Senescence of bone marrow mesenchymal stem cells in Wistar male rats receiving normal chow/high-calorie diets with/without vitamin D.

Bone marrow mesenchymal stem cells (BM-MSCs) have a momentous function in the composition of the bone marrow microenvironment because of their many valuable properties and abilities, such as immunomodulation and hematopoiesis. The features and actions of MSCs are influenced by senescence, which may be affected by various factors such as nutritional/micronutrients status, e.g., vitamin D. This study aimed to examine the effects of a high-calorie diet (HCD) with/without vitamin D on BM-MSCs senescence. In the first phase, 48 middle-aged rats were fed a normal chow diet (NCD, n = 24) and an HCD (n = 24) for 26 weeks. Afterward, the rats in each group were randomly divided into three equal subgroups. Immediately, eight-rat from each diet group were sacrificed to assess the HCD effects on the first phase measurements. In the second phase, the remaining 4 groups of rats were fed either NCD or HCD with (6 IU/g) or without vitamin D (standard intake: 1 IU/g); in other words, in this phase, the animals were fed (a) NCD, (b) NCD plus vitamin D, (c) HCD, and (d) HCD plus vitamin D for 4 months. BM-MSCs were isolated and evaluated for P16INK4a, P38 MAPK, and Bmi-1 gene expression, reactive oxygen species (ROS) levels, SA-β-gal activity, and cell cycle profile at the end of both phases. After 26 weeks (first phase), the ROS level, SA-β-gal-positive cells, and cells in the G1 phase were significantly higher in HCD-fed rats than in NCD-fed ones (P < 0.05). HCD prescription did not significantly affect cells in the S and G2 phases (p > 0.05). Compared with the NCD-fed animals, P16INK4a and P38 MAPK gene expression were up-regulated in the HCD-fed animals; also, Bmi-1 gene expression was down-regulated (P < 0.05). BM-MSCs from vitamin D-treated rats (second phase) exhibited reduced mRNA levels of P16INK4a and P38 MAPK genes and increased Bmi-1 mRNA levels (all P < 0.05). Vitamin D prescription also declined the percentage of SA-β-gal-positive cells, ROS levels, and the cells in the G1 phase and increased the cells in the S phase in both NCD and HCD-fed animals (P < 0.05). The reduction of the cells in the G2 phase in rats fed with an NCD plus vitamin D was statistically non-significant (P = 0.128) and significant in HCD plus vitamin D rats (P = 0.002). HCD accelerates BM-MSCs senescence, and vitamin D reduces BM-MSCs senescence biomarkers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biogerontology
Biogerontology 医学-老年医学
CiteScore
8.00
自引率
4.40%
发文量
54
审稿时长
>12 weeks
期刊介绍: The journal Biogerontology offers a platform for research which aims primarily at achieving healthy old age accompanied by improved longevity. The focus is on efforts to understand, prevent, cure or minimize age-related impairments. Biogerontology provides a peer-reviewed forum for publishing original research data, new ideas and discussions on modulating the aging process by physical, chemical and biological means, including transgenic and knockout organisms; cell culture systems to develop new approaches and health care products for maintaining or recovering the lost biochemical functions; immunology, autoimmunity and infection in aging; vertebrates, invertebrates, micro-organisms and plants for experimental studies on genetic determinants of aging and longevity; biodemography and theoretical models linking aging and survival kinetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信