Lin Cheng, Haoqing Zhai, Juan Du, Gang Zhang, Gan Shi
{"title":"洛贝托林通过下调癌症ASCT2抑制细胞增殖并诱导细胞凋亡。","authors":"Lin Cheng, Haoqing Zhai, Juan Du, Gang Zhang, Gan Shi","doi":"10.1007/s10616-023-00588-w","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer (GC) is a heterogeneous disease and is the fifth most common cancer worldwide. Lobetyolin, as a bioactive ingredient extracted from <i>Codonopsis pilosula (Franch.) Nannf.</i>, has been reported to exert anti-tumor effects in several cancer types. This study was aimed to investigate the role of lobetyolin in GC and the associated mechanism. MKN-45 and MKN-28 cells were incubated with concentrations of lobetyolin for 24 h. The viability and survival of GC cells were evaluated by performing MTT assay. Glutamine uptake, Adenosine Triphosphate, reactive oxygen species (ROS), and glutathione levels were measured by corresponding kits. Apoptosis and mitochondrial membrane potential of GC cells were determined by flow cytometry. Alanine, serine, cysteine-preferring transporter 2 (ASCT2) and the AKT/GSK3β/c-Myc pathway protein levels were examined by western blotting. Xenograft model and immunohistochemical staining were used to evaluate the pharmacological effects of lobetyolin in mice in vivo. We found that lobetyolin treatment suppressed the proliferative capacity of both MKN-45 and MKN-28 cells in a concentration-dependent manner. Lobetyolin reduced the uptake of glutamine and downregulated the expression levels of ASCT2 in GC cells and xenograft tumors. Lobetyolin effectively restrained the growth of tumors in vivo. In addition, lobetyolin induced the accumulation of ROS to attenuate mitochondria-mediated apoptosis via downregulation of ASCT2 expression. Lobetyolin promoted the phosphorylation of c-Myc and suppressed the phosphorylation of GSK3β and AKT in both MKN-45 and MKN-28 cells. The level of total Nrf2 protein was reduced after lobetyolin treatment. Overall, lobetyolin exerts anti-cancer effects by repressing cell proliferation and inducing cell apoptosis via downregulation of ASCT2 in GC.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"75 5","pages":"435-448"},"PeriodicalIF":2.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465467/pdf/","citationCount":"0","resultStr":"{\"title\":\"Lobetyolin inhibits cell proliferation and induces cell apoptosis by downregulating ASCT2 in gastric cancer.\",\"authors\":\"Lin Cheng, Haoqing Zhai, Juan Du, Gang Zhang, Gan Shi\",\"doi\":\"10.1007/s10616-023-00588-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gastric cancer (GC) is a heterogeneous disease and is the fifth most common cancer worldwide. Lobetyolin, as a bioactive ingredient extracted from <i>Codonopsis pilosula (Franch.) Nannf.</i>, has been reported to exert anti-tumor effects in several cancer types. This study was aimed to investigate the role of lobetyolin in GC and the associated mechanism. MKN-45 and MKN-28 cells were incubated with concentrations of lobetyolin for 24 h. The viability and survival of GC cells were evaluated by performing MTT assay. Glutamine uptake, Adenosine Triphosphate, reactive oxygen species (ROS), and glutathione levels were measured by corresponding kits. Apoptosis and mitochondrial membrane potential of GC cells were determined by flow cytometry. Alanine, serine, cysteine-preferring transporter 2 (ASCT2) and the AKT/GSK3β/c-Myc pathway protein levels were examined by western blotting. Xenograft model and immunohistochemical staining were used to evaluate the pharmacological effects of lobetyolin in mice in vivo. We found that lobetyolin treatment suppressed the proliferative capacity of both MKN-45 and MKN-28 cells in a concentration-dependent manner. Lobetyolin reduced the uptake of glutamine and downregulated the expression levels of ASCT2 in GC cells and xenograft tumors. Lobetyolin effectively restrained the growth of tumors in vivo. In addition, lobetyolin induced the accumulation of ROS to attenuate mitochondria-mediated apoptosis via downregulation of ASCT2 expression. Lobetyolin promoted the phosphorylation of c-Myc and suppressed the phosphorylation of GSK3β and AKT in both MKN-45 and MKN-28 cells. The level of total Nrf2 protein was reduced after lobetyolin treatment. Overall, lobetyolin exerts anti-cancer effects by repressing cell proliferation and inducing cell apoptosis via downregulation of ASCT2 in GC.</p>\",\"PeriodicalId\":10890,\"journal\":{\"name\":\"Cytotechnology\",\"volume\":\"75 5\",\"pages\":\"435-448\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465467/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-023-00588-w\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-023-00588-w","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Lobetyolin inhibits cell proliferation and induces cell apoptosis by downregulating ASCT2 in gastric cancer.
Gastric cancer (GC) is a heterogeneous disease and is the fifth most common cancer worldwide. Lobetyolin, as a bioactive ingredient extracted from Codonopsis pilosula (Franch.) Nannf., has been reported to exert anti-tumor effects in several cancer types. This study was aimed to investigate the role of lobetyolin in GC and the associated mechanism. MKN-45 and MKN-28 cells were incubated with concentrations of lobetyolin for 24 h. The viability and survival of GC cells were evaluated by performing MTT assay. Glutamine uptake, Adenosine Triphosphate, reactive oxygen species (ROS), and glutathione levels were measured by corresponding kits. Apoptosis and mitochondrial membrane potential of GC cells were determined by flow cytometry. Alanine, serine, cysteine-preferring transporter 2 (ASCT2) and the AKT/GSK3β/c-Myc pathway protein levels were examined by western blotting. Xenograft model and immunohistochemical staining were used to evaluate the pharmacological effects of lobetyolin in mice in vivo. We found that lobetyolin treatment suppressed the proliferative capacity of both MKN-45 and MKN-28 cells in a concentration-dependent manner. Lobetyolin reduced the uptake of glutamine and downregulated the expression levels of ASCT2 in GC cells and xenograft tumors. Lobetyolin effectively restrained the growth of tumors in vivo. In addition, lobetyolin induced the accumulation of ROS to attenuate mitochondria-mediated apoptosis via downregulation of ASCT2 expression. Lobetyolin promoted the phosphorylation of c-Myc and suppressed the phosphorylation of GSK3β and AKT in both MKN-45 and MKN-28 cells. The level of total Nrf2 protein was reduced after lobetyolin treatment. Overall, lobetyolin exerts anti-cancer effects by repressing cell proliferation and inducing cell apoptosis via downregulation of ASCT2 in GC.
期刊介绍:
The scope of the Journal includes:
1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products.
2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools.
3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research.
4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy.
5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.