{"title":"S-LSTM-ATT:一种具有优化特征的混合深度学习方法,用于脑电图中的情绪识别。","authors":"Abgeena Abgeena, Shruti Garg","doi":"10.1007/s13755-023-00242-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Human emotion recognition using electroencephalograms (EEG) is a critical area of research in human-machine interfaces. Furthermore, EEG data are convoluted and diverse; thus, acquiring consistent results from these signals remains challenging. As such, the authors felt compelled to investigate EEG signals to identify different emotions.</p><p><strong>Methods: </strong>A novel deep learning (DL) model stacked long short-term memory with attention (S-LSTM-ATT) model is proposed for emotion recognition (ER) in EEG signals. Long Short-Term Memory (LSTM) and attention networks effectively handle time-series EEG data and recognise intrinsic connections and patterns. Therefore, the model combined the strengths of the LSTM model and incorporated an attention network to enhance its effectiveness. Optimal features were extracted from the metaheuristic-based firefly optimisation algorithm (FFOA) to identify different emotions efficiently.</p><p><strong>Results: </strong>The proposed approach recognised emotions in two publicly available standard datasets: SEED and EEG Brainwave. An outstanding accuracy of 97.83% in the SEED and 98.36% in the EEG Brainwave datasets were obtained for three emotion indices: positive, neutral and negative. Aside from accuracy, a comprehensive comparison of the proposed model's precision, recall, F1 score and kappa score was performed to determine the model's applicability. When applied to the SEED and EEG Brainwave datasets, the proposed S-LSTM-ATT achieved superior results to baseline models such as Convolutional Neural Networks (CNN), Gated Recurrent Unit (GRU) and LSTM.</p><p><strong>Conclusion: </strong>Combining an FFOA-based feature selection (FS) and an S-LSTM-ATT-based classification model demonstrated promising results with high accuracy. Other metrics like precision, recall, F1 score and kappa score proved the suitability of the proposed model for ER in EEG signals.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"40"},"PeriodicalIF":4.7000,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465436/pdf/","citationCount":"0","resultStr":"{\"title\":\"S-LSTM-ATT: a hybrid deep learning approach with optimized features for emotion recognition in electroencephalogram.\",\"authors\":\"Abgeena Abgeena, Shruti Garg\",\"doi\":\"10.1007/s13755-023-00242-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Human emotion recognition using electroencephalograms (EEG) is a critical area of research in human-machine interfaces. Furthermore, EEG data are convoluted and diverse; thus, acquiring consistent results from these signals remains challenging. As such, the authors felt compelled to investigate EEG signals to identify different emotions.</p><p><strong>Methods: </strong>A novel deep learning (DL) model stacked long short-term memory with attention (S-LSTM-ATT) model is proposed for emotion recognition (ER) in EEG signals. Long Short-Term Memory (LSTM) and attention networks effectively handle time-series EEG data and recognise intrinsic connections and patterns. Therefore, the model combined the strengths of the LSTM model and incorporated an attention network to enhance its effectiveness. Optimal features were extracted from the metaheuristic-based firefly optimisation algorithm (FFOA) to identify different emotions efficiently.</p><p><strong>Results: </strong>The proposed approach recognised emotions in two publicly available standard datasets: SEED and EEG Brainwave. An outstanding accuracy of 97.83% in the SEED and 98.36% in the EEG Brainwave datasets were obtained for three emotion indices: positive, neutral and negative. Aside from accuracy, a comprehensive comparison of the proposed model's precision, recall, F1 score and kappa score was performed to determine the model's applicability. When applied to the SEED and EEG Brainwave datasets, the proposed S-LSTM-ATT achieved superior results to baseline models such as Convolutional Neural Networks (CNN), Gated Recurrent Unit (GRU) and LSTM.</p><p><strong>Conclusion: </strong>Combining an FFOA-based feature selection (FS) and an S-LSTM-ATT-based classification model demonstrated promising results with high accuracy. Other metrics like precision, recall, F1 score and kappa score proved the suitability of the proposed model for ER in EEG signals.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":\"11 1\",\"pages\":\"40\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465436/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-023-00242-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00242-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
S-LSTM-ATT: a hybrid deep learning approach with optimized features for emotion recognition in electroencephalogram.
Purpose: Human emotion recognition using electroencephalograms (EEG) is a critical area of research in human-machine interfaces. Furthermore, EEG data are convoluted and diverse; thus, acquiring consistent results from these signals remains challenging. As such, the authors felt compelled to investigate EEG signals to identify different emotions.
Methods: A novel deep learning (DL) model stacked long short-term memory with attention (S-LSTM-ATT) model is proposed for emotion recognition (ER) in EEG signals. Long Short-Term Memory (LSTM) and attention networks effectively handle time-series EEG data and recognise intrinsic connections and patterns. Therefore, the model combined the strengths of the LSTM model and incorporated an attention network to enhance its effectiveness. Optimal features were extracted from the metaheuristic-based firefly optimisation algorithm (FFOA) to identify different emotions efficiently.
Results: The proposed approach recognised emotions in two publicly available standard datasets: SEED and EEG Brainwave. An outstanding accuracy of 97.83% in the SEED and 98.36% in the EEG Brainwave datasets were obtained for three emotion indices: positive, neutral and negative. Aside from accuracy, a comprehensive comparison of the proposed model's precision, recall, F1 score and kappa score was performed to determine the model's applicability. When applied to the SEED and EEG Brainwave datasets, the proposed S-LSTM-ATT achieved superior results to baseline models such as Convolutional Neural Networks (CNN), Gated Recurrent Unit (GRU) and LSTM.
Conclusion: Combining an FFOA-based feature selection (FS) and an S-LSTM-ATT-based classification model demonstrated promising results with high accuracy. Other metrics like precision, recall, F1 score and kappa score proved the suitability of the proposed model for ER in EEG signals.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.