肾脏病学中的自然语言处理

IF 2 3区 医学 Q2 UROLOGY & NEPHROLOGY
Tielman T. Van Vleck , Douglas Farrell , Lili Chan
{"title":"肾脏病学中的自然语言处理","authors":"Tielman T. Van Vleck ,&nbsp;Douglas Farrell ,&nbsp;Lili Chan","doi":"10.1053/j.ackd.2022.07.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Unstructured data in the electronic health records contain essential patient information. Natural language processing (NLP), teaching a computer to read, allows us to tap into these data without needing the time and effort of manual chart abstraction. The core first step for all NLP algorithms is preprocessing the text to identify the core words that differentiate the text while filtering out the noise. Traditional NLP uses a rule-based approach, applying grammatical rules to infer meaning from the text. Newer NLP approaches use machine learning/deep learning which can infer meaning without explicitly being programmed. NLP use in </span>nephrology<span><span> research has focused on identifying distinct disease processes, such as CKD, and extraction of patient-oriented outcomes such as symptoms with high sensitivity. NLP can identify patient features from clinical text associated with </span>acute kidney injury<span> and progression of CKD. Lastly, inclusion of features extracted using NLP improved the performance of risk-prediction models compared to models that only use structured data. Implementation of NLP algorithms has been slow, partially hindered by the lack of external validation of NLP algorithms. However, NLP allows for extraction of key patient characteristics from free text, an infrequently used resource in nephrology.</span></span></p></div>","PeriodicalId":7221,"journal":{"name":"Advances in chronic kidney disease","volume":"29 5","pages":"Pages 465-471"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Natural Language Processing in Nephrology\",\"authors\":\"Tielman T. Van Vleck ,&nbsp;Douglas Farrell ,&nbsp;Lili Chan\",\"doi\":\"10.1053/j.ackd.2022.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Unstructured data in the electronic health records contain essential patient information. Natural language processing (NLP), teaching a computer to read, allows us to tap into these data without needing the time and effort of manual chart abstraction. The core first step for all NLP algorithms is preprocessing the text to identify the core words that differentiate the text while filtering out the noise. Traditional NLP uses a rule-based approach, applying grammatical rules to infer meaning from the text. Newer NLP approaches use machine learning/deep learning which can infer meaning without explicitly being programmed. NLP use in </span>nephrology<span><span> research has focused on identifying distinct disease processes, such as CKD, and extraction of patient-oriented outcomes such as symptoms with high sensitivity. NLP can identify patient features from clinical text associated with </span>acute kidney injury<span> and progression of CKD. Lastly, inclusion of features extracted using NLP improved the performance of risk-prediction models compared to models that only use structured data. Implementation of NLP algorithms has been slow, partially hindered by the lack of external validation of NLP algorithms. However, NLP allows for extraction of key patient characteristics from free text, an infrequently used resource in nephrology.</span></span></p></div>\",\"PeriodicalId\":7221,\"journal\":{\"name\":\"Advances in chronic kidney disease\",\"volume\":\"29 5\",\"pages\":\"Pages 465-471\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in chronic kidney disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1548559522001288\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in chronic kidney disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1548559522001288","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 1

摘要

电子健康记录中的非结构化数据包含基本的患者信息。自然语言处理(NLP),教计算机阅读,使我们能够挖掘这些数据,而不需要人工抽象图表的时间和精力。所有NLP算法的核心第一步是对文本进行预处理,以识别区分文本的核心词,同时过滤掉噪声。传统的NLP使用基于规则的方法,应用语法规则从文本中推断意义。较新的NLP方法使用机器学习/深度学习,可以在没有明确编程的情况下推断含义。NLP在肾脏病研究中的应用主要集中在识别不同的疾病过程,如CKD,以及提取以患者为导向的结果,如高灵敏度的症状。NLP可以从与急性肾损伤和CKD进展相关的临床文献中识别患者特征。最后,与仅使用结构化数据的模型相比,包含使用NLP提取的特征可以提高风险预测模型的性能。NLP算法的实现一直很缓慢,部分原因是缺乏对NLP算法的外部验证。然而,NLP允许从自由文本中提取关键患者特征,这是肾脏病学中不常用的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Natural Language Processing in Nephrology

Unstructured data in the electronic health records contain essential patient information. Natural language processing (NLP), teaching a computer to read, allows us to tap into these data without needing the time and effort of manual chart abstraction. The core first step for all NLP algorithms is preprocessing the text to identify the core words that differentiate the text while filtering out the noise. Traditional NLP uses a rule-based approach, applying grammatical rules to infer meaning from the text. Newer NLP approaches use machine learning/deep learning which can infer meaning without explicitly being programmed. NLP use in nephrology research has focused on identifying distinct disease processes, such as CKD, and extraction of patient-oriented outcomes such as symptoms with high sensitivity. NLP can identify patient features from clinical text associated with acute kidney injury and progression of CKD. Lastly, inclusion of features extracted using NLP improved the performance of risk-prediction models compared to models that only use structured data. Implementation of NLP algorithms has been slow, partially hindered by the lack of external validation of NLP algorithms. However, NLP allows for extraction of key patient characteristics from free text, an infrequently used resource in nephrology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in chronic kidney disease
Advances in chronic kidney disease 医学-泌尿学与肾脏学
自引率
3.40%
发文量
69
审稿时长
11.1 weeks
期刊介绍: The purpose of Advances Chronic Kidney Disease is to provide in-depth, scholarly review articles about the care and management of persons with early kidney disease and kidney failure, as well as those at risk for kidney disease. Emphasis is on articles related to the early identification of kidney disease; prevention or delay in progression of kidney disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信