分子氧作为 EPR 自旋标记膜结构和动态研究的探针分子。

Oxygen (Basel, Switzerland) Pub Date : 2022-09-01 Epub Date: 2022-08-04 DOI:10.3390/oxygen2030021
Witold K Subczynski, Justyna Widomska, Marija Raguz, Marta Pasenkiewicz-Gierula
{"title":"分子氧作为 EPR 自旋标记膜结构和动态研究的探针分子。","authors":"Witold K Subczynski, Justyna Widomska, Marija Raguz, Marta Pasenkiewicz-Gierula","doi":"10.3390/oxygen2030021","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular oxygen (O<sub>2</sub>) is the perfect probe molecule for membrane studies carried out using the saturation recovery EPR technique. O<sub>2</sub> is a small, paramagnetic, hydrophobic enough molecule that easily partitions into a membrane's different phases and domains. In membrane studies, the saturation recovery EPR method requires two paramagnetic probes: a lipid-analog nitroxide spin label and an oxygen molecule. The experimentally derived parameters of this method are the spin-lattice relaxation times (<i>T</i> <sub>1s</sub>) of spin labels and rates of bimolecular collisions between O<sub>2</sub> and the nitroxide fragment. Thanks to the long <i>T</i> <sub>1</sub> of lipid spin labels (from 1 to 10 μs), the approach is very sensitive to changes of the local (around the nitroxide fragment) O<sub>2</sub> diffusion-concentration product. Small variations in the lipid packing affect O<sub>2</sub> solubility and O<sub>2</sub> diffusion, which can be detected by the shortening of <i>T</i> <sub>1</sub> of spin labels. Using O<sub>2</sub> as a probe molecule and a different lipid spin label inserted into specific phases of the membrane and membrane domains allows data about the lateral arrangement of lipid membranes to be obtained. Moreover, using a lipid spin label with the nitroxide fragment attached to its head group or a hydrocarbon chain at different positions also enables data about molecular dynamics and structure at different membrane depths to be obtained. Thus, the method can be used to investigate not only the lateral organization of the membrane (i.e., the presence of membrane domains and phases), but also the depth-dependent membrane structure and dynamics, and, hence, the membrane properties in three dimensions.</p>","PeriodicalId":74387,"journal":{"name":"Oxygen (Basel, Switzerland)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965258/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular oxygen as a probe molecule in EPR spin-labeling studies of membrane structure and dynamics.\",\"authors\":\"Witold K Subczynski, Justyna Widomska, Marija Raguz, Marta Pasenkiewicz-Gierula\",\"doi\":\"10.3390/oxygen2030021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molecular oxygen (O<sub>2</sub>) is the perfect probe molecule for membrane studies carried out using the saturation recovery EPR technique. O<sub>2</sub> is a small, paramagnetic, hydrophobic enough molecule that easily partitions into a membrane's different phases and domains. In membrane studies, the saturation recovery EPR method requires two paramagnetic probes: a lipid-analog nitroxide spin label and an oxygen molecule. The experimentally derived parameters of this method are the spin-lattice relaxation times (<i>T</i> <sub>1s</sub>) of spin labels and rates of bimolecular collisions between O<sub>2</sub> and the nitroxide fragment. Thanks to the long <i>T</i> <sub>1</sub> of lipid spin labels (from 1 to 10 μs), the approach is very sensitive to changes of the local (around the nitroxide fragment) O<sub>2</sub> diffusion-concentration product. Small variations in the lipid packing affect O<sub>2</sub> solubility and O<sub>2</sub> diffusion, which can be detected by the shortening of <i>T</i> <sub>1</sub> of spin labels. Using O<sub>2</sub> as a probe molecule and a different lipid spin label inserted into specific phases of the membrane and membrane domains allows data about the lateral arrangement of lipid membranes to be obtained. Moreover, using a lipid spin label with the nitroxide fragment attached to its head group or a hydrocarbon chain at different positions also enables data about molecular dynamics and structure at different membrane depths to be obtained. Thus, the method can be used to investigate not only the lateral organization of the membrane (i.e., the presence of membrane domains and phases), but also the depth-dependent membrane structure and dynamics, and, hence, the membrane properties in three dimensions.</p>\",\"PeriodicalId\":74387,\"journal\":{\"name\":\"Oxygen (Basel, Switzerland)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965258/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxygen (Basel, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/oxygen2030021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxygen (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/oxygen2030021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/8/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分子氧(O2)是使用饱和复原 EPR 技术进行膜研究的理想探针分子。O2 是一种小分子、顺磁性、疏水性分子,很容易分隔到膜的不同相和域中。在膜研究中,饱和恢复 EPR 方法需要两个顺磁探针:一个类似于硝酸脂质的自旋标签和一个氧分子。该方法的实验参数是自旋标签的自旋晶格弛豫时间(T 1s)以及氧气和硝基氧化物片段之间的双分子碰撞速率。由于脂质自旋标签的 T 1 时间较长(从 1 到 10 μs),该方法对局部(硝基氧化物片段周围)O2 扩散浓度乘积的变化非常敏感。脂质填料的微小变化会影响 O2 溶解度和 O2 扩散,这可以通过缩短自旋标签的 T 1 来检测。使用 O2 作为探针分子,将不同的脂质自旋标签插入膜的特定相位和膜域中,可以获得有关脂质膜横向排列的数据。此外,使用硝基片段附着在头基或碳氢链不同位置的脂质自旋标签,还能获得不同膜深度的分子动力学和结构数据。因此,该方法不仅可用于研究膜的横向组织(即膜域和膜相的存在),还可用于研究随深度变化的膜结构和动态,从而研究膜的三维特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Molecular oxygen as a probe molecule in EPR spin-labeling studies of membrane structure and dynamics.

Molecular oxygen as a probe molecule in EPR spin-labeling studies of membrane structure and dynamics.

Molecular oxygen as a probe molecule in EPR spin-labeling studies of membrane structure and dynamics.

Molecular oxygen as a probe molecule in EPR spin-labeling studies of membrane structure and dynamics.

Molecular oxygen (O2) is the perfect probe molecule for membrane studies carried out using the saturation recovery EPR technique. O2 is a small, paramagnetic, hydrophobic enough molecule that easily partitions into a membrane's different phases and domains. In membrane studies, the saturation recovery EPR method requires two paramagnetic probes: a lipid-analog nitroxide spin label and an oxygen molecule. The experimentally derived parameters of this method are the spin-lattice relaxation times (T 1s) of spin labels and rates of bimolecular collisions between O2 and the nitroxide fragment. Thanks to the long T 1 of lipid spin labels (from 1 to 10 μs), the approach is very sensitive to changes of the local (around the nitroxide fragment) O2 diffusion-concentration product. Small variations in the lipid packing affect O2 solubility and O2 diffusion, which can be detected by the shortening of T 1 of spin labels. Using O2 as a probe molecule and a different lipid spin label inserted into specific phases of the membrane and membrane domains allows data about the lateral arrangement of lipid membranes to be obtained. Moreover, using a lipid spin label with the nitroxide fragment attached to its head group or a hydrocarbon chain at different positions also enables data about molecular dynamics and structure at different membrane depths to be obtained. Thus, the method can be used to investigate not only the lateral organization of the membrane (i.e., the presence of membrane domains and phases), but also the depth-dependent membrane structure and dynamics, and, hence, the membrane properties in three dimensions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信