真菌菌丝体的寿命和细胞核质量检查:双核细胞中夹子连接作用的新假设。

IF 8 1区 生物学 Q1 MICROBIOLOGY
Microbiology and Molecular Biology Reviews Pub Date : 2023-09-26 Epub Date: 2023-07-06 DOI:10.1128/mmbr.00022-21
Duur K Aanen, Anouk van 't Padje, Benjamin Auxier
{"title":"真菌菌丝体的寿命和细胞核质量检查:双核细胞中夹子连接作用的新假设。","authors":"Duur K Aanen, Anouk van 't Padje, Benjamin Auxier","doi":"10.1128/mmbr.00022-21","DOIUrl":null,"url":null,"abstract":"<p><p>This paper addresses the stability of mycelial growth in fungi and differences between ascomycetes and basidiomycetes. Starting with general evolutionary theories of multicellularity and the role of sex, we then discuss individuality in fungi. Recent research has demonstrated the deleterious consequences of nucleus-level selection in fungal mycelia, favoring cheaters with a nucleus-level benefit during spore formation but a negative effect on mycelium-level fitness. Cheaters appear to generally be loss-of-fusion (LOF) mutants, with a higher propensity to form aerial hyphae developing into asexual spores. Since LOF mutants rely on heterokaryosis with wild-type nuclei, we argue that regular single-spore bottlenecks can efficiently select against such cheater mutants. We then zoom in on ecological differences between ascomycetes being typically fast-growing but short-lived with frequent asexual-spore bottlenecks and basidiomycetes being generally slow-growing but long-lived and usually without asexual-spore bottlenecks. We argue that these life history differences have coevolved with stricter nuclear quality checks in basidiomycetes. Specifically, we propose a new function for clamp connections, structures formed during the sexual stage in ascomycetes and basidiomycetes but during somatic growth only in basidiomycete dikaryons. During dikaryon cell division, the two haploid nuclei temporarily enter a monokaryotic phase, by alternatingly entering a retrograde-growing clamp cell, which subsequently fuses with the subapical cell to recover the dikaryotic cell. We hypothesize that clamp connections act as screening devices for nuclear quality, with both nuclei continuously testing each other for fusion ability, a test that LOF mutants will fail. By linking differences in longevity of the mycelial phase to ecology and stringency of nuclear quality checks, we propose that mycelia have a constant and low lifetime cheating risk, irrespective of their size and longevity.</p>","PeriodicalId":18520,"journal":{"name":"Microbiology and Molecular Biology Reviews","volume":" ","pages":"e0002221"},"PeriodicalIF":8.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521366/pdf/","citationCount":"0","resultStr":"{\"title\":\"Longevity of Fungal Mycelia and Nuclear Quality Checks: a New Hypothesis for the Role of Clamp Connections in Dikaryons.\",\"authors\":\"Duur K Aanen, Anouk van 't Padje, Benjamin Auxier\",\"doi\":\"10.1128/mmbr.00022-21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper addresses the stability of mycelial growth in fungi and differences between ascomycetes and basidiomycetes. Starting with general evolutionary theories of multicellularity and the role of sex, we then discuss individuality in fungi. Recent research has demonstrated the deleterious consequences of nucleus-level selection in fungal mycelia, favoring cheaters with a nucleus-level benefit during spore formation but a negative effect on mycelium-level fitness. Cheaters appear to generally be loss-of-fusion (LOF) mutants, with a higher propensity to form aerial hyphae developing into asexual spores. Since LOF mutants rely on heterokaryosis with wild-type nuclei, we argue that regular single-spore bottlenecks can efficiently select against such cheater mutants. We then zoom in on ecological differences between ascomycetes being typically fast-growing but short-lived with frequent asexual-spore bottlenecks and basidiomycetes being generally slow-growing but long-lived and usually without asexual-spore bottlenecks. We argue that these life history differences have coevolved with stricter nuclear quality checks in basidiomycetes. Specifically, we propose a new function for clamp connections, structures formed during the sexual stage in ascomycetes and basidiomycetes but during somatic growth only in basidiomycete dikaryons. During dikaryon cell division, the two haploid nuclei temporarily enter a monokaryotic phase, by alternatingly entering a retrograde-growing clamp cell, which subsequently fuses with the subapical cell to recover the dikaryotic cell. We hypothesize that clamp connections act as screening devices for nuclear quality, with both nuclei continuously testing each other for fusion ability, a test that LOF mutants will fail. By linking differences in longevity of the mycelial phase to ecology and stringency of nuclear quality checks, we propose that mycelia have a constant and low lifetime cheating risk, irrespective of their size and longevity.</p>\",\"PeriodicalId\":18520,\"journal\":{\"name\":\"Microbiology and Molecular Biology Reviews\",\"volume\":\" \",\"pages\":\"e0002221\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10521366/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbiology and Molecular Biology Reviews\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mmbr.00022-21\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/7/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology and Molecular Biology Reviews","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mmbr.00022-21","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文论述了真菌菌丝生长的稳定性以及子囊菌和担子菌之间的差异。从多细胞性和性别作用的一般进化理论开始,我们讨论了真菌的个性。最近的研究表明,真菌菌丝体细胞核水平选择的有害后果,有利于骗子在孢子形成过程中获得细胞核水平的益处,但对菌丝体水平的适应性有负面影响。作弊者通常是融合缺失(LOF)突变体,更容易形成气生菌丝,发育成无性孢子。由于LOF突变体依赖于与野生型细胞核的异核性,我们认为规则的单孢子瓶颈可以有效地选择对抗这种欺骗突变体。然后,我们放大子囊菌和担子菌之间的生态差异,子囊菌通常生长迅速但寿命短,经常出现无性孢子瓶颈,担子菌通常生长缓慢但寿命长,通常没有无性孢子瓶颈。我们认为,这些生活史的差异与担子菌中更严格的核质量检查有关。具体而言,我们提出了一种新的夹紧连接功能,即子囊菌和担子菌在有性阶段形成的结构,但仅在担子菌双核体细胞生长过程中形成的结构。在双核细胞分裂过程中,两个单倍体细胞核通过交替进入逆行生长的钳夹细胞暂时进入单核期,钳夹细胞随后与根尖下细胞融合以恢复双核细胞。我们假设夹钳连接可以作为核质量的筛选设备,两个核都在不断地测试彼此的融合能力,LOF突变体的测试将失败。通过将菌丝体阶段寿命的差异与生态学和核质量检查的严格性联系起来,我们提出,无论菌丝体的大小和寿命如何,它们都具有恒定且低的寿命欺骗风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Longevity of Fungal Mycelia and Nuclear Quality Checks: a New Hypothesis for the Role of Clamp Connections in Dikaryons.

This paper addresses the stability of mycelial growth in fungi and differences between ascomycetes and basidiomycetes. Starting with general evolutionary theories of multicellularity and the role of sex, we then discuss individuality in fungi. Recent research has demonstrated the deleterious consequences of nucleus-level selection in fungal mycelia, favoring cheaters with a nucleus-level benefit during spore formation but a negative effect on mycelium-level fitness. Cheaters appear to generally be loss-of-fusion (LOF) mutants, with a higher propensity to form aerial hyphae developing into asexual spores. Since LOF mutants rely on heterokaryosis with wild-type nuclei, we argue that regular single-spore bottlenecks can efficiently select against such cheater mutants. We then zoom in on ecological differences between ascomycetes being typically fast-growing but short-lived with frequent asexual-spore bottlenecks and basidiomycetes being generally slow-growing but long-lived and usually without asexual-spore bottlenecks. We argue that these life history differences have coevolved with stricter nuclear quality checks in basidiomycetes. Specifically, we propose a new function for clamp connections, structures formed during the sexual stage in ascomycetes and basidiomycetes but during somatic growth only in basidiomycete dikaryons. During dikaryon cell division, the two haploid nuclei temporarily enter a monokaryotic phase, by alternatingly entering a retrograde-growing clamp cell, which subsequently fuses with the subapical cell to recover the dikaryotic cell. We hypothesize that clamp connections act as screening devices for nuclear quality, with both nuclei continuously testing each other for fusion ability, a test that LOF mutants will fail. By linking differences in longevity of the mycelial phase to ecology and stringency of nuclear quality checks, we propose that mycelia have a constant and low lifetime cheating risk, irrespective of their size and longevity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.80
自引率
0.80%
发文量
27
期刊介绍: Microbiology and Molecular Biology Reviews (MMBR), a journal that explores the significance and interrelationships of recent discoveries in various microbiology fields, publishes review articles that help both specialists and nonspecialists understand and apply the latest findings in their own research. MMBR covers a wide range of topics in microbiology, including microbial ecology, evolution, parasitology, biotechnology, and immunology. The journal caters to scientists with diverse interests in all areas of microbial science and encompasses viruses, bacteria, archaea, fungi, unicellular eukaryotes, and microbial parasites. MMBR primarily publishes authoritative and critical reviews that push the boundaries of knowledge, appealing to both specialists and generalists. The journal often includes descriptive figures and tables to enhance understanding. Indexed/Abstracted in various databases such as Agricola, BIOSIS Previews, CAB Abstracts, Cambridge Scientific Abstracts, Chemical Abstracts Service, Current Contents- Life Sciences, EMBASE, Food Science and Technology Abstracts, Illustrata, MEDLINE, Science Citation Index Expanded (Web of Science), Summon, and Scopus, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信