{"title":"SEEG-RF显示和治疗Geschwind综合征的癫痫网络:一个案例研究","authors":"Mikael Levy , Maya Weinstein , Alexie Mirson , Sandi Madar , Mordechai Lorberboym , Nir Getter , Moshe Zer-Zion , Jehuda Sepkuty","doi":"10.1016/j.ebr.2023.100617","DOIUrl":null,"url":null,"abstract":"<div><p>Stereotypic neural networks are repeatedly activated in drug-refractory epilepsies (DRE), reinforcing the expression of certain psycho-affective traits. Geschwind syndrome (GS) can serve as a model for such phenomena among patients with temporal lobe DRE. We describe stereo-electroencephalogram (SEEG) exploration in a 34-year-old male with DRE and GS, and his treatment by SEEG-radiofrequency (SEEG-RF) ablation. We hypothesized that this approach could reveal the underlying epileptic network and map eloquent faculties adjacent to SEEG-RF targets, which can be further used to disintegrate the epileptic network. The patient underwent a multi-modal pre-surgical evaluation consisting of video EEG (VEEG), EEG source localization, 18-fluorodexyglucose-PET/MRI, neuropsychological and psychiatric assessments. Pre-surgical multi-modal analyses suggested a T4-centered seizure onset zone. SEEG further localized the SOZ within the right amygdalo-hippocampal region and temporal neocortex, with the right parieto-temporal region as the propagation zone. SEEG-RF ablation under awake conditions and continuous EEG monitoring confirmed the abolishment of epileptic activity. Follow-up at 20 months showed seizure suppression (Engel 1A/ILEA 1) and a significantly improved and stable psycho-affective state. To the best of our knowledge this is the first description of the intracranial biomarkers of GS and its further treatment through SEEG-RF ablation within the scope of DRE.</p></div>","PeriodicalId":36558,"journal":{"name":"Epilepsy and Behavior Reports","volume":"24 ","pages":"Article 100617"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/a0/main.PMC10462843.pdf","citationCount":"0","resultStr":"{\"title\":\"SEEG-RF for revealing and treating Geschwind syndrome's epileptic network: A case study\",\"authors\":\"Mikael Levy , Maya Weinstein , Alexie Mirson , Sandi Madar , Mordechai Lorberboym , Nir Getter , Moshe Zer-Zion , Jehuda Sepkuty\",\"doi\":\"10.1016/j.ebr.2023.100617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Stereotypic neural networks are repeatedly activated in drug-refractory epilepsies (DRE), reinforcing the expression of certain psycho-affective traits. Geschwind syndrome (GS) can serve as a model for such phenomena among patients with temporal lobe DRE. We describe stereo-electroencephalogram (SEEG) exploration in a 34-year-old male with DRE and GS, and his treatment by SEEG-radiofrequency (SEEG-RF) ablation. We hypothesized that this approach could reveal the underlying epileptic network and map eloquent faculties adjacent to SEEG-RF targets, which can be further used to disintegrate the epileptic network. The patient underwent a multi-modal pre-surgical evaluation consisting of video EEG (VEEG), EEG source localization, 18-fluorodexyglucose-PET/MRI, neuropsychological and psychiatric assessments. Pre-surgical multi-modal analyses suggested a T4-centered seizure onset zone. SEEG further localized the SOZ within the right amygdalo-hippocampal region and temporal neocortex, with the right parieto-temporal region as the propagation zone. SEEG-RF ablation under awake conditions and continuous EEG monitoring confirmed the abolishment of epileptic activity. Follow-up at 20 months showed seizure suppression (Engel 1A/ILEA 1) and a significantly improved and stable psycho-affective state. To the best of our knowledge this is the first description of the intracranial biomarkers of GS and its further treatment through SEEG-RF ablation within the scope of DRE.</p></div>\",\"PeriodicalId\":36558,\"journal\":{\"name\":\"Epilepsy and Behavior Reports\",\"volume\":\"24 \",\"pages\":\"Article 100617\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c2/a0/main.PMC10462843.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epilepsy and Behavior Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589986423000357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsy and Behavior Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589986423000357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
SEEG-RF for revealing and treating Geschwind syndrome's epileptic network: A case study
Stereotypic neural networks are repeatedly activated in drug-refractory epilepsies (DRE), reinforcing the expression of certain psycho-affective traits. Geschwind syndrome (GS) can serve as a model for such phenomena among patients with temporal lobe DRE. We describe stereo-electroencephalogram (SEEG) exploration in a 34-year-old male with DRE and GS, and his treatment by SEEG-radiofrequency (SEEG-RF) ablation. We hypothesized that this approach could reveal the underlying epileptic network and map eloquent faculties adjacent to SEEG-RF targets, which can be further used to disintegrate the epileptic network. The patient underwent a multi-modal pre-surgical evaluation consisting of video EEG (VEEG), EEG source localization, 18-fluorodexyglucose-PET/MRI, neuropsychological and psychiatric assessments. Pre-surgical multi-modal analyses suggested a T4-centered seizure onset zone. SEEG further localized the SOZ within the right amygdalo-hippocampal region and temporal neocortex, with the right parieto-temporal region as the propagation zone. SEEG-RF ablation under awake conditions and continuous EEG monitoring confirmed the abolishment of epileptic activity. Follow-up at 20 months showed seizure suppression (Engel 1A/ILEA 1) and a significantly improved and stable psycho-affective state. To the best of our knowledge this is the first description of the intracranial biomarkers of GS and its further treatment through SEEG-RF ablation within the scope of DRE.