耐缺氧是小鼠屈指肌骨骼肌的固有表型

IF 5.1 Q2 CELL BIOLOGY
Function (Oxford, England) Pub Date : 2023-03-21 eCollection Date: 2023-01-01 DOI:10.1093/function/zqad012
Adam J Amorese, Everett C Minchew, Michael D Tarpey, Andrew T Readyoff, Nicholas C Williamson, Cameron A Schmidt, Shawna L McMillin, Emma J Goldberg, Zoe S Terwilliger, Quincy A Spangenburg, Carol A Witczak, Jeffrey J Brault, E Dale Abel, Joseph M McClung, Kelsey H Fisher-Wellman, Espen E Spangenburg
{"title":"耐缺氧是小鼠屈指肌骨骼肌的固有表型","authors":"Adam J Amorese, Everett C Minchew, Michael D Tarpey, Andrew T Readyoff, Nicholas C Williamson, Cameron A Schmidt, Shawna L McMillin, Emma J Goldberg, Zoe S Terwilliger, Quincy A Spangenburg, Carol A Witczak, Jeffrey J Brault, E Dale Abel, Joseph M McClung, Kelsey H Fisher-Wellman, Espen E Spangenburg","doi":"10.1093/function/zqad012","DOIUrl":null,"url":null,"abstract":"<p><p>The various functions of skeletal muscle (movement, respiration, thermogenesis, etc.) require the presence of oxygen (O<sub>2</sub>). Inadequate O<sub>2</sub> bioavailability (ie, hypoxia) is detrimental to muscle function and, in chronic cases, can result in muscle wasting. Current therapeutic interventions have proven largely ineffective to rescue skeletal muscle from hypoxic damage. However, our lab has identified a mammalian skeletal muscle that maintains proper physiological function in an environment depleted of O<sub>2</sub>. Using mouse models of <i>in vivo</i> hindlimb ischemia and <i>ex vivo</i> anoxia exposure, we observed the preservation of force production in the flexor digitorum brevis (FDB), while in contrast the extensor digitorum longus (EDL) and soleus muscles suffered loss of force output. Unlike other muscles, we found that the FDB phenotype is not dependent on mitochondria, which partially explains the hypoxia resistance. Muscle proteomes were interrogated using a discovery-based approach, which identified significantly greater expression of the transmembrane glucose transporter GLUT1 in the FDB as compared to the EDL and soleus. Through loss-and-gain-of-function approaches, we determined that GLUT1 is necessary for the FDB to survive hypoxia, but overexpression of GLUT1 was insufficient to rescue other skeletal muscles from hypoxic damage. Collectively, the data demonstrate that the FDB is uniquely resistant to hypoxic insults. Defining the mechanisms that explain the phenotype may provide insight towards developing approaches for preventing hypoxia-induced tissue damage.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":"4 3","pages":"zqad012"},"PeriodicalIF":5.1000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/80/55/zqad012.PMC10165545.pdf","citationCount":"0","resultStr":"{\"title\":\"Hypoxia Resistance Is an Inherent Phenotype of the Mouse Flexor Digitorum Brevis Skeletal Muscle.\",\"authors\":\"Adam J Amorese, Everett C Minchew, Michael D Tarpey, Andrew T Readyoff, Nicholas C Williamson, Cameron A Schmidt, Shawna L McMillin, Emma J Goldberg, Zoe S Terwilliger, Quincy A Spangenburg, Carol A Witczak, Jeffrey J Brault, E Dale Abel, Joseph M McClung, Kelsey H Fisher-Wellman, Espen E Spangenburg\",\"doi\":\"10.1093/function/zqad012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The various functions of skeletal muscle (movement, respiration, thermogenesis, etc.) require the presence of oxygen (O<sub>2</sub>). Inadequate O<sub>2</sub> bioavailability (ie, hypoxia) is detrimental to muscle function and, in chronic cases, can result in muscle wasting. Current therapeutic interventions have proven largely ineffective to rescue skeletal muscle from hypoxic damage. However, our lab has identified a mammalian skeletal muscle that maintains proper physiological function in an environment depleted of O<sub>2</sub>. Using mouse models of <i>in vivo</i> hindlimb ischemia and <i>ex vivo</i> anoxia exposure, we observed the preservation of force production in the flexor digitorum brevis (FDB), while in contrast the extensor digitorum longus (EDL) and soleus muscles suffered loss of force output. Unlike other muscles, we found that the FDB phenotype is not dependent on mitochondria, which partially explains the hypoxia resistance. Muscle proteomes were interrogated using a discovery-based approach, which identified significantly greater expression of the transmembrane glucose transporter GLUT1 in the FDB as compared to the EDL and soleus. Through loss-and-gain-of-function approaches, we determined that GLUT1 is necessary for the FDB to survive hypoxia, but overexpression of GLUT1 was insufficient to rescue other skeletal muscles from hypoxic damage. Collectively, the data demonstrate that the FDB is uniquely resistant to hypoxic insults. Defining the mechanisms that explain the phenotype may provide insight towards developing approaches for preventing hypoxia-induced tissue damage.</p>\",\"PeriodicalId\":73119,\"journal\":{\"name\":\"Function (Oxford, England)\",\"volume\":\"4 3\",\"pages\":\"zqad012\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/80/55/zqad012.PMC10165545.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Function (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/function/zqad012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Function (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/function/zqad012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨骼肌的各种功能(运动、呼吸、产热等)都需要氧气(O2)的存在。氧气生物利用率不足(即缺氧)会损害肌肉功能,在长期情况下还会导致肌肉萎缩。事实证明,目前的治疗干预措施在很大程度上无法有效拯救缺氧损伤的骨骼肌。然而,我们的实验室发现了一种哺乳动物骨骼肌,它能在缺氧环境中保持正常的生理功能。利用小鼠体内后肢缺血和体外缺氧暴露模型,我们观察到屈指肌(FDB)的力量输出得以保持,相反,伸指肌(EDL)和比目鱼肌的力量输出受到损失。与其他肌肉不同,我们发现 FDB 的表型并不依赖线粒体,这也部分解释了其耐缺氧性。我们使用一种基于发现的方法对肌肉蛋白质组进行了研究,结果发现与 EDL 和比目鱼肌相比,FDB 中跨膜葡萄糖转运体 GLUT1 的表达量明显更高。通过功能缺失和功能获得方法,我们确定 GLUT1 是 FDB 在缺氧条件下存活的必要条件,但过量表达 GLUT1 不足以挽救其他骨骼肌免受缺氧损伤。总之,这些数据证明了 FDB 对缺氧损伤具有独特的抵抗力。确定解释这种表型的机制可能有助于开发预防缺氧引起的组织损伤的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hypoxia Resistance Is an Inherent Phenotype of the Mouse Flexor Digitorum Brevis Skeletal Muscle.

Hypoxia Resistance Is an Inherent Phenotype of the Mouse Flexor Digitorum Brevis Skeletal Muscle.

Hypoxia Resistance Is an Inherent Phenotype of the Mouse Flexor Digitorum Brevis Skeletal Muscle.

Hypoxia Resistance Is an Inherent Phenotype of the Mouse Flexor Digitorum Brevis Skeletal Muscle.

The various functions of skeletal muscle (movement, respiration, thermogenesis, etc.) require the presence of oxygen (O2). Inadequate O2 bioavailability (ie, hypoxia) is detrimental to muscle function and, in chronic cases, can result in muscle wasting. Current therapeutic interventions have proven largely ineffective to rescue skeletal muscle from hypoxic damage. However, our lab has identified a mammalian skeletal muscle that maintains proper physiological function in an environment depleted of O2. Using mouse models of in vivo hindlimb ischemia and ex vivo anoxia exposure, we observed the preservation of force production in the flexor digitorum brevis (FDB), while in contrast the extensor digitorum longus (EDL) and soleus muscles suffered loss of force output. Unlike other muscles, we found that the FDB phenotype is not dependent on mitochondria, which partially explains the hypoxia resistance. Muscle proteomes were interrogated using a discovery-based approach, which identified significantly greater expression of the transmembrane glucose transporter GLUT1 in the FDB as compared to the EDL and soleus. Through loss-and-gain-of-function approaches, we determined that GLUT1 is necessary for the FDB to survive hypoxia, but overexpression of GLUT1 was insufficient to rescue other skeletal muscles from hypoxic damage. Collectively, the data demonstrate that the FDB is uniquely resistant to hypoxic insults. Defining the mechanisms that explain the phenotype may provide insight towards developing approaches for preventing hypoxia-induced tissue damage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
3 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信