Dongmei Dai, Junzheng Xie, Yun Zheng, Fangbin Chen, Bin Zhao, Li Miao
{"title":"H3K27乙酰化诱导的FSTL1通过P300/RUNX1共激活上调,加剧了阿尔茨海默病中自噬介导的神经元损伤和NF-κB刺激的炎症。","authors":"Dongmei Dai, Junzheng Xie, Yun Zheng, Fangbin Chen, Bin Zhao, Li Miao","doi":"10.1007/s10616-023-00589-9","DOIUrl":null,"url":null,"abstract":"<p><p>Follistatin-like protein 1 (FSTL1) has been demonstrated to participate in the pathogenesis of several neurological diseases. The current study informed the role of H3K27 acetylation-induced FSTL1 upregulation in Alzheimer's disease (AD). Our investigation discovered the upregulated FSTL1 expression and enhanced autophagy activity in AD. FSTL1 knockdown successfully attenuated the injuries of Aβ<sub>1-42</sub>-challenged SH-SY5Y cells through the inhibition of autophagy activity. Besides, FSTL1 deficiency suppresses the inflammatory response and NF-κB signaling in AD. Moreover, it was found that p300 was recruited by transcriptional factor RUNX1 to stimulate the H3K27 acetylation in FSTL1 promoter region, which caused the upregulation of FSTL1 in AD. To summarize, p300 acted as a co-activator of RUNX1 to trigger the activation of FSTL1 in AD, resulting in the exacerbated injuries and inflammatory responses of Aβ<sub>1-42</sub>-induced SH-SY5Y cells.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465437/pdf/","citationCount":"0","resultStr":"{\"title\":\"H3K27 acetylation-induced FSTL1 upregulation by P300/RUNX1 co-activation exacerbated autophagy-mediated neuronal damage and NF-κB-stimulated inflammation in Alzheimer's disease.\",\"authors\":\"Dongmei Dai, Junzheng Xie, Yun Zheng, Fangbin Chen, Bin Zhao, Li Miao\",\"doi\":\"10.1007/s10616-023-00589-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Follistatin-like protein 1 (FSTL1) has been demonstrated to participate in the pathogenesis of several neurological diseases. The current study informed the role of H3K27 acetylation-induced FSTL1 upregulation in Alzheimer's disease (AD). Our investigation discovered the upregulated FSTL1 expression and enhanced autophagy activity in AD. FSTL1 knockdown successfully attenuated the injuries of Aβ<sub>1-42</sub>-challenged SH-SY5Y cells through the inhibition of autophagy activity. Besides, FSTL1 deficiency suppresses the inflammatory response and NF-κB signaling in AD. Moreover, it was found that p300 was recruited by transcriptional factor RUNX1 to stimulate the H3K27 acetylation in FSTL1 promoter region, which caused the upregulation of FSTL1 in AD. To summarize, p300 acted as a co-activator of RUNX1 to trigger the activation of FSTL1 in AD, resulting in the exacerbated injuries and inflammatory responses of Aβ<sub>1-42</sub>-induced SH-SY5Y cells.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465437/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-023-00589-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-023-00589-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
H3K27 acetylation-induced FSTL1 upregulation by P300/RUNX1 co-activation exacerbated autophagy-mediated neuronal damage and NF-κB-stimulated inflammation in Alzheimer's disease.
Follistatin-like protein 1 (FSTL1) has been demonstrated to participate in the pathogenesis of several neurological diseases. The current study informed the role of H3K27 acetylation-induced FSTL1 upregulation in Alzheimer's disease (AD). Our investigation discovered the upregulated FSTL1 expression and enhanced autophagy activity in AD. FSTL1 knockdown successfully attenuated the injuries of Aβ1-42-challenged SH-SY5Y cells through the inhibition of autophagy activity. Besides, FSTL1 deficiency suppresses the inflammatory response and NF-κB signaling in AD. Moreover, it was found that p300 was recruited by transcriptional factor RUNX1 to stimulate the H3K27 acetylation in FSTL1 promoter region, which caused the upregulation of FSTL1 in AD. To summarize, p300 acted as a co-activator of RUNX1 to trigger the activation of FSTL1 in AD, resulting in the exacerbated injuries and inflammatory responses of Aβ1-42-induced SH-SY5Y cells.