{"title":"耐药麦芽糊精通过改变肠道环境抑制肠道酚类物质的产生。","authors":"Akane Kanasaki, Tomonori Kimura, Machiko Kitagawa, Yuka Kishimoto","doi":"10.3177/jnsv.69.268","DOIUrl":null,"url":null,"abstract":"<p><p>Protein is an essential nutrient that plays several roles in the maintenance of the human body. A high-protein diet is also known to play an important role in weight management in obese individuals and in maintaining muscle strength in the elderly. However, over-consumption of protein can have negative effects on health, including deterioration of the intestinal environment by the production of amino acid metabolites such as phenols. Interest in the regulation of the intestinal environment to maintain health has gained attention recently. Resistant maltodextrin (RMD) is a prebiotic dietary fiber. Therefore, we investigated whether RMD suppressed the production of amino acid metabolites through intestinal regulation in rats. Wistar rats were fed either an AIN-93G diet or a modified AIN-93G diet containing 5% tyrosine. RMD (2.5% or 5.0%) was provided with drinking water. The rats were fed these diets and water ad libitum for 3 wk. Urine was collected overnight, after which serum, liver, kidneys, and the whole cecum were collected from rats under anesthesia with isoflurane for analysis of phenols and microbiota. RMD decreased the cecal, serum, and urinary levels of phenols, especially phenol. Moreover, the relative abundance of intestinal Romboutsia ilealis showed a significant correlation with the cecal phenols levels, and RMD decreased the abundance of this species. Thus, RMD may suppress phenols production and decrease serum phenols levels by altering the intestinal environment in rats.</p>","PeriodicalId":16624,"journal":{"name":"Journal of nutritional science and vitaminology","volume":"69 4","pages":"268-274"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resistant Maltodextrin Suppresses Intestinal Phenols Production by Modifying the Intestinal Environment.\",\"authors\":\"Akane Kanasaki, Tomonori Kimura, Machiko Kitagawa, Yuka Kishimoto\",\"doi\":\"10.3177/jnsv.69.268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein is an essential nutrient that plays several roles in the maintenance of the human body. A high-protein diet is also known to play an important role in weight management in obese individuals and in maintaining muscle strength in the elderly. However, over-consumption of protein can have negative effects on health, including deterioration of the intestinal environment by the production of amino acid metabolites such as phenols. Interest in the regulation of the intestinal environment to maintain health has gained attention recently. Resistant maltodextrin (RMD) is a prebiotic dietary fiber. Therefore, we investigated whether RMD suppressed the production of amino acid metabolites through intestinal regulation in rats. Wistar rats were fed either an AIN-93G diet or a modified AIN-93G diet containing 5% tyrosine. RMD (2.5% or 5.0%) was provided with drinking water. The rats were fed these diets and water ad libitum for 3 wk. Urine was collected overnight, after which serum, liver, kidneys, and the whole cecum were collected from rats under anesthesia with isoflurane for analysis of phenols and microbiota. RMD decreased the cecal, serum, and urinary levels of phenols, especially phenol. Moreover, the relative abundance of intestinal Romboutsia ilealis showed a significant correlation with the cecal phenols levels, and RMD decreased the abundance of this species. Thus, RMD may suppress phenols production and decrease serum phenols levels by altering the intestinal environment in rats.</p>\",\"PeriodicalId\":16624,\"journal\":{\"name\":\"Journal of nutritional science and vitaminology\",\"volume\":\"69 4\",\"pages\":\"268-274\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of nutritional science and vitaminology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3177/jnsv.69.268\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nutritional science and vitaminology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3177/jnsv.69.268","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Resistant Maltodextrin Suppresses Intestinal Phenols Production by Modifying the Intestinal Environment.
Protein is an essential nutrient that plays several roles in the maintenance of the human body. A high-protein diet is also known to play an important role in weight management in obese individuals and in maintaining muscle strength in the elderly. However, over-consumption of protein can have negative effects on health, including deterioration of the intestinal environment by the production of amino acid metabolites such as phenols. Interest in the regulation of the intestinal environment to maintain health has gained attention recently. Resistant maltodextrin (RMD) is a prebiotic dietary fiber. Therefore, we investigated whether RMD suppressed the production of amino acid metabolites through intestinal regulation in rats. Wistar rats were fed either an AIN-93G diet or a modified AIN-93G diet containing 5% tyrosine. RMD (2.5% or 5.0%) was provided with drinking water. The rats were fed these diets and water ad libitum for 3 wk. Urine was collected overnight, after which serum, liver, kidneys, and the whole cecum were collected from rats under anesthesia with isoflurane for analysis of phenols and microbiota. RMD decreased the cecal, serum, and urinary levels of phenols, especially phenol. Moreover, the relative abundance of intestinal Romboutsia ilealis showed a significant correlation with the cecal phenols levels, and RMD decreased the abundance of this species. Thus, RMD may suppress phenols production and decrease serum phenols levels by altering the intestinal environment in rats.
期刊介绍:
The Journal of Nutritional Science and Vitaminology is an international medium publishing in English of original work in all branches of nutritional science, food science and vitaminology from any country.
Manuscripts submitted for publication should be as concise as possible and must be based on the results of original research or of original interpretation of existing knowledge not previously published. Although data may have been reported, in part, in preliminary or
abstract form, a full report of such research is unacceptable if it has been or will be submitted for consideration by another journal.