{"title":"脂多糖诱导小鼠工作记忆的改变与代谢性谷氨酸受体5有关,并与环氧化酶-2诱导的变化形成对比:突触后密度蛋白95和唐氏综合征细胞粘附分子的参与","authors":"Katarzyna Stachowicz , Patrycja Pańczyszyn-Trzewik , Magdalena Sowa-Kućma , Paulina Misztak","doi":"10.1016/j.npep.2023.102347","DOIUrl":null,"url":null,"abstract":"<div><p><span>The strength and quality of the signal propagated by the glutamate<span><span> synapse (Glu) depend, among other things, on the structure of the postsynaptic part and the quality of adhesion between the interacting components of the synapse. Postsynaptic density protein 95 (PSD95), </span>mammalian target of rapamycin<span> (mTOR), and Down syndrome cell adhesion molecule<span><span> (DSCAM) are components of the proper functioning of an excitatory synapse. PSD95 is a member of the membrane-associated </span>guanylate kinases protein family, mainly located at the postsynaptic density of the excitatory synapse. PSD95, via direct interaction, regulates the clustering and functionality of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and </span></span></span></span><em>N</em><span><span><span>-methyl-D-aspartic acid (NMDA) receptors at a synapse. Here, the effects of treatment with an antagonist of mGluR5 (MTEP) and </span>NS398<span><span> (cyclooxygenase-2, COX-2 inhibitor) on PSD95, mTOR, and DSCAM in the hippocampus<span> (HC) of C57B1/6 J mice using Western blots in the context of learning were examined. Moreover, the sensitivity of selected proteins to </span></span>lipopolysaccharide (LPS) was monitored. </span></span>MTEP injected for seven days induced upregulation of PSD95 in HC of mice. The observed effect was regulated by a COX-2 inhibitor and concurrently by LPS. Accompanying alterations in DSCAM protein were found, suggesting changes in adhesion strength after modulation of glutamatergic (Glu) synapse via tested compounds.</span></p></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"100 ","pages":"Article 102347"},"PeriodicalIF":2.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in working memory induced by lipopolysaccharide administration in mice are associated with metabotropic glutamate receptors 5 and contrast with changes induced by cyclooxygenase-2: Involvement of postsynaptic density protein 95 and down syndrome cell adhesion molecule\",\"authors\":\"Katarzyna Stachowicz , Patrycja Pańczyszyn-Trzewik , Magdalena Sowa-Kućma , Paulina Misztak\",\"doi\":\"10.1016/j.npep.2023.102347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The strength and quality of the signal propagated by the glutamate<span><span> synapse (Glu) depend, among other things, on the structure of the postsynaptic part and the quality of adhesion between the interacting components of the synapse. Postsynaptic density protein 95 (PSD95), </span>mammalian target of rapamycin<span> (mTOR), and Down syndrome cell adhesion molecule<span><span> (DSCAM) are components of the proper functioning of an excitatory synapse. PSD95 is a member of the membrane-associated </span>guanylate kinases protein family, mainly located at the postsynaptic density of the excitatory synapse. PSD95, via direct interaction, regulates the clustering and functionality of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and </span></span></span></span><em>N</em><span><span><span>-methyl-D-aspartic acid (NMDA) receptors at a synapse. Here, the effects of treatment with an antagonist of mGluR5 (MTEP) and </span>NS398<span><span> (cyclooxygenase-2, COX-2 inhibitor) on PSD95, mTOR, and DSCAM in the hippocampus<span> (HC) of C57B1/6 J mice using Western blots in the context of learning were examined. Moreover, the sensitivity of selected proteins to </span></span>lipopolysaccharide (LPS) was monitored. </span></span>MTEP injected for seven days induced upregulation of PSD95 in HC of mice. The observed effect was regulated by a COX-2 inhibitor and concurrently by LPS. Accompanying alterations in DSCAM protein were found, suggesting changes in adhesion strength after modulation of glutamatergic (Glu) synapse via tested compounds.</span></p></div>\",\"PeriodicalId\":19254,\"journal\":{\"name\":\"Neuropeptides\",\"volume\":\"100 \",\"pages\":\"Article 102347\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropeptides\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143417923000288\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropeptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143417923000288","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Changes in working memory induced by lipopolysaccharide administration in mice are associated with metabotropic glutamate receptors 5 and contrast with changes induced by cyclooxygenase-2: Involvement of postsynaptic density protein 95 and down syndrome cell adhesion molecule
The strength and quality of the signal propagated by the glutamate synapse (Glu) depend, among other things, on the structure of the postsynaptic part and the quality of adhesion between the interacting components of the synapse. Postsynaptic density protein 95 (PSD95), mammalian target of rapamycin (mTOR), and Down syndrome cell adhesion molecule (DSCAM) are components of the proper functioning of an excitatory synapse. PSD95 is a member of the membrane-associated guanylate kinases protein family, mainly located at the postsynaptic density of the excitatory synapse. PSD95, via direct interaction, regulates the clustering and functionality of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptors at a synapse. Here, the effects of treatment with an antagonist of mGluR5 (MTEP) and NS398 (cyclooxygenase-2, COX-2 inhibitor) on PSD95, mTOR, and DSCAM in the hippocampus (HC) of C57B1/6 J mice using Western blots in the context of learning were examined. Moreover, the sensitivity of selected proteins to lipopolysaccharide (LPS) was monitored. MTEP injected for seven days induced upregulation of PSD95 in HC of mice. The observed effect was regulated by a COX-2 inhibitor and concurrently by LPS. Accompanying alterations in DSCAM protein were found, suggesting changes in adhesion strength after modulation of glutamatergic (Glu) synapse via tested compounds.
期刊介绍:
The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the identification of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems.
The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials.