人参皂苷Rg1对秀丽隐杆线虫脂质代谢和温度适应的调节作用

IF 6.8 2区 医学 Q1 CHEMISTRY, MEDICINAL
Hao Shi , Jiamin Zhao , Yiwen Li , Junjie Li , Yunjia Li , Jia Zhang , Zhantu Qiu , Chaofeng Wu , Mengchen Qin , Chang Liu , Zhiyun Zeng , Chao Zhang , Lei Gao
{"title":"人参皂苷Rg1对秀丽隐杆线虫脂质代谢和温度适应的调节作用","authors":"Hao Shi ,&nbsp;Jiamin Zhao ,&nbsp;Yiwen Li ,&nbsp;Junjie Li ,&nbsp;Yunjia Li ,&nbsp;Jia Zhang ,&nbsp;Zhantu Qiu ,&nbsp;Chaofeng Wu ,&nbsp;Mengchen Qin ,&nbsp;Chang Liu ,&nbsp;Zhiyun Zeng ,&nbsp;Chao Zhang ,&nbsp;Lei Gao","doi":"10.1016/j.jgr.2022.11.005","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Obesity is a risk factor for aging and many diseases, and the disorder of lipid metabolism makes it prominent. This study aims to investigate the effect of ginsenoside Rg1 on aging, lipid metabolism and stress resistance</p></div><div><h3>Methods</h3><p>Rg1 was administered to <em>Caenorhabditis elegans</em> (<em>C. elegans</em>) cultured in NGM or GNGM. The lifespan, locomotory activity, lipid accumulation, cold and heat stress resistance and related mRNA expression of the worms were examined. Gene knockout mutants were used to clarify the effect on lipid metabolism of Rg1. GFP-binding mutants were used to observe the changes in protein expression</p></div><div><h3>Results</h3><p>We reported that Rg1 reduced lipid accumulation and improved stress resistance in <em>C. elegans</em>. Rg1 significantly reduced the expression of fatty acid synthesis-related genes and lipid metabolism-related genes in <em>C. elegans</em>. However, Rg1 did not affect the fat storage in <em>fat-5/fat-6</em> double mutant or <em>nhr-49</em> mutant. Combined with network pharmacology, we clarified the possible pathways and targets of Rg1 in lipid metabolism. In addition, Rg1-treated <em>C. elegans</em> showed a higher expression of anti-oxidative genes and heat shock proteins, which might contribute to stress resistance</p></div><div><h3>Conclusion</h3><p>Rg1 reduced fat accumulation by regulating lipid metabolism via <em>nhr-49</em> and enhanced stress resistance by its antioxidant effect in <em>C. elegans</em>.</p></div>","PeriodicalId":16035,"journal":{"name":"Journal of Ginseng Research","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0c/7f/main.PMC10310868.pdf","citationCount":"0","resultStr":"{\"title\":\"Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans\",\"authors\":\"Hao Shi ,&nbsp;Jiamin Zhao ,&nbsp;Yiwen Li ,&nbsp;Junjie Li ,&nbsp;Yunjia Li ,&nbsp;Jia Zhang ,&nbsp;Zhantu Qiu ,&nbsp;Chaofeng Wu ,&nbsp;Mengchen Qin ,&nbsp;Chang Liu ,&nbsp;Zhiyun Zeng ,&nbsp;Chao Zhang ,&nbsp;Lei Gao\",\"doi\":\"10.1016/j.jgr.2022.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Obesity is a risk factor for aging and many diseases, and the disorder of lipid metabolism makes it prominent. This study aims to investigate the effect of ginsenoside Rg1 on aging, lipid metabolism and stress resistance</p></div><div><h3>Methods</h3><p>Rg1 was administered to <em>Caenorhabditis elegans</em> (<em>C. elegans</em>) cultured in NGM or GNGM. The lifespan, locomotory activity, lipid accumulation, cold and heat stress resistance and related mRNA expression of the worms were examined. Gene knockout mutants were used to clarify the effect on lipid metabolism of Rg1. GFP-binding mutants were used to observe the changes in protein expression</p></div><div><h3>Results</h3><p>We reported that Rg1 reduced lipid accumulation and improved stress resistance in <em>C. elegans</em>. Rg1 significantly reduced the expression of fatty acid synthesis-related genes and lipid metabolism-related genes in <em>C. elegans</em>. However, Rg1 did not affect the fat storage in <em>fat-5/fat-6</em> double mutant or <em>nhr-49</em> mutant. Combined with network pharmacology, we clarified the possible pathways and targets of Rg1 in lipid metabolism. In addition, Rg1-treated <em>C. elegans</em> showed a higher expression of anti-oxidative genes and heat shock proteins, which might contribute to stress resistance</p></div><div><h3>Conclusion</h3><p>Rg1 reduced fat accumulation by regulating lipid metabolism via <em>nhr-49</em> and enhanced stress resistance by its antioxidant effect in <em>C. elegans</em>.</p></div>\",\"PeriodicalId\":16035,\"journal\":{\"name\":\"Journal of Ginseng Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0c/7f/main.PMC10310868.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ginseng Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S122684532200152X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ginseng Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S122684532200152X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

背景肥胖是衰老和多种疾病的危险因素,而脂质代谢紊乱使其突出。本研究旨在探讨人参皂苷Rg1对衰老、脂质代谢和应激抵抗的影响。方法将Rg1给药于NGM或GNGM培养的秀丽隐杆线虫(C.elegans)。检测了蠕虫的寿命、运动活性、脂质积累、抗寒性和耐热性以及相关mRNA的表达。基因敲除突变体用于阐明Rg1对脂质代谢的影响。利用GFP结合突变体观察蛋白质表达的变化。结果Rg1降低了秀丽隐杆线虫的脂质积累,提高了其抗逆性。Rg1显著降低了秀丽显杆线虫脂肪酸合成相关基因和脂质代谢相关基因的表达。而在fat-5/fat-6双突变体或nhr-49突变体中,Rg1不影响脂肪储存。结合网络药理学,我们阐明了Rg1在脂质代谢中的可能途径和靶点。此外,Rg1处理的秀丽隐杆线虫表现出更高的抗氧化基因和热休克蛋白表达,这可能有助于增强其抗应激能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans

Ginsenosides Rg1 regulate lipid metabolism and temperature adaptation in Caenorhabditis elegans

Background

Obesity is a risk factor for aging and many diseases, and the disorder of lipid metabolism makes it prominent. This study aims to investigate the effect of ginsenoside Rg1 on aging, lipid metabolism and stress resistance

Methods

Rg1 was administered to Caenorhabditis elegans (C. elegans) cultured in NGM or GNGM. The lifespan, locomotory activity, lipid accumulation, cold and heat stress resistance and related mRNA expression of the worms were examined. Gene knockout mutants were used to clarify the effect on lipid metabolism of Rg1. GFP-binding mutants were used to observe the changes in protein expression

Results

We reported that Rg1 reduced lipid accumulation and improved stress resistance in C. elegans. Rg1 significantly reduced the expression of fatty acid synthesis-related genes and lipid metabolism-related genes in C. elegans. However, Rg1 did not affect the fat storage in fat-5/fat-6 double mutant or nhr-49 mutant. Combined with network pharmacology, we clarified the possible pathways and targets of Rg1 in lipid metabolism. In addition, Rg1-treated C. elegans showed a higher expression of anti-oxidative genes and heat shock proteins, which might contribute to stress resistance

Conclusion

Rg1 reduced fat accumulation by regulating lipid metabolism via nhr-49 and enhanced stress resistance by its antioxidant effect in C. elegans.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ginseng Research
Journal of Ginseng Research CHEMISTRY, MEDICINAL-INTEGRATIVE & COMPLEMENTARY MEDICINE
CiteScore
11.40
自引率
9.50%
发文量
111
审稿时长
6-12 weeks
期刊介绍: Journal of Ginseng Research (JGR) is an official, open access journal of the Korean Society of Ginseng and is the only international journal publishing scholarly reports on ginseng research in the world. The journal is a bimonthly peer-reviewed publication featuring high-quality studies related to basic, pre-clinical, and clinical researches on ginseng to reflect recent progresses in ginseng research. JGR publishes papers, either experimental or theoretical, that advance our understanding of ginseng science, including plant sciences, biology, chemistry, pharmacology, toxicology, pharmacokinetics, veterinary medicine, biochemistry, manufacture, and clinical study of ginseng since 1976. It also includes the new paradigm of integrative research, covering alternative medicinal approaches. Article types considered for publication include review articles, original research articles, and brief reports. JGR helps researchers to understand mechanisms for traditional efficacy of ginseng and to put their clinical evidence together. It provides balanced information on basic science and clinical applications to researchers, manufacturers, practitioners, teachers, scholars, and medical doctors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信