María S Lencina, Cristian M Piqueras, Daniel A Vega, Marcelo A Villar, María C Del Barrio
{"title":"环境友好型淀粉/海藻酸盐气凝胶,用于从水介质中吸附铜。微观结构和动力学研究。","authors":"María S Lencina, Cristian M Piqueras, Daniel A Vega, Marcelo A Villar, María C Del Barrio","doi":"10.1080/10934529.2023.2188847","DOIUrl":null,"url":null,"abstract":"<p><p>This work investigated the synthesis and characterization of alginate/starch porous materials and their application as copper ions adsorbents from aqueous media. Initially, pregel aqueous solutions with different biopolymer concentrations (1, 3, and 5% w/w) and alginate contents (25, 50, and 75% w/w) were prepared. Hydrogel formation was performed by internal and external gelation methods. Finally, the drying step was done via CO<sub>2</sub><sup>sc</sup> leading to aerogels and via freeze-drying leading to cryogels. Process parameters influence on the final properties of materials was evaluated by BET isotherms, SEM, EDS, and TGA. Regardless the gelation method applied, interesting materials with meso- and macro-pore structure were prepared from pregel mixtures with 3% w/w biopolymer concentration and an alginate content of only 25% w/w. Low alginate content reduces the final cost of the materials. Concerning copper removal, the adsorption data were well fitted to the pseudo-second order kinetic model for aerogels and cryogels, showing aerogels the highest adsorption capacity (40 mg/g) and removal efficiency (∼ 92%). Materials demonstrated excellent reusability throughout five consecutive adsorption/desorption cycles. Hence, environmentally friendly materials with a high practical value as low-cost bioadsorbents were synthesized, having great performance in the removal of copper ions from aqueous solution.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Environmentally friendly starch/alginate aerogels for copper adsorption from aqueous media. A microstructural and kinetic study.\",\"authors\":\"María S Lencina, Cristian M Piqueras, Daniel A Vega, Marcelo A Villar, María C Del Barrio\",\"doi\":\"10.1080/10934529.2023.2188847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work investigated the synthesis and characterization of alginate/starch porous materials and their application as copper ions adsorbents from aqueous media. Initially, pregel aqueous solutions with different biopolymer concentrations (1, 3, and 5% w/w) and alginate contents (25, 50, and 75% w/w) were prepared. Hydrogel formation was performed by internal and external gelation methods. Finally, the drying step was done via CO<sub>2</sub><sup>sc</sup> leading to aerogels and via freeze-drying leading to cryogels. Process parameters influence on the final properties of materials was evaluated by BET isotherms, SEM, EDS, and TGA. Regardless the gelation method applied, interesting materials with meso- and macro-pore structure were prepared from pregel mixtures with 3% w/w biopolymer concentration and an alginate content of only 25% w/w. Low alginate content reduces the final cost of the materials. Concerning copper removal, the adsorption data were well fitted to the pseudo-second order kinetic model for aerogels and cryogels, showing aerogels the highest adsorption capacity (40 mg/g) and removal efficiency (∼ 92%). Materials demonstrated excellent reusability throughout five consecutive adsorption/desorption cycles. Hence, environmentally friendly materials with a high practical value as low-cost bioadsorbents were synthesized, having great performance in the removal of copper ions from aqueous solution.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2188847\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2188847","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Environmentally friendly starch/alginate aerogels for copper adsorption from aqueous media. A microstructural and kinetic study.
This work investigated the synthesis and characterization of alginate/starch porous materials and their application as copper ions adsorbents from aqueous media. Initially, pregel aqueous solutions with different biopolymer concentrations (1, 3, and 5% w/w) and alginate contents (25, 50, and 75% w/w) were prepared. Hydrogel formation was performed by internal and external gelation methods. Finally, the drying step was done via CO2sc leading to aerogels and via freeze-drying leading to cryogels. Process parameters influence on the final properties of materials was evaluated by BET isotherms, SEM, EDS, and TGA. Regardless the gelation method applied, interesting materials with meso- and macro-pore structure were prepared from pregel mixtures with 3% w/w biopolymer concentration and an alginate content of only 25% w/w. Low alginate content reduces the final cost of the materials. Concerning copper removal, the adsorption data were well fitted to the pseudo-second order kinetic model for aerogels and cryogels, showing aerogels the highest adsorption capacity (40 mg/g) and removal efficiency (∼ 92%). Materials demonstrated excellent reusability throughout five consecutive adsorption/desorption cycles. Hence, environmentally friendly materials with a high practical value as low-cost bioadsorbents were synthesized, having great performance in the removal of copper ions from aqueous solution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.