{"title":"雷鳍鱼类大脑的多样性。","authors":"Isabelle C Gebhardt, Michael H Hofmann","doi":"10.1159/000530243","DOIUrl":null,"url":null,"abstract":"<p><p>Brains are very plastic, both in response to phenotypic diversity and to larger evolutionary trends. Differences between taxa cannot be easily attributed to either factors. Comparative morphological data on higher taxonomic levels are scarce, especially in ray-finned fishes. Here we show the great diversity of brain areas of more than 150 species of ray-finned fishes by volumetric measurements using block-face imaging. We found that differences among families or orders are more likely due to environmental needs than to systematic position. Most notable changes are present in the brain areas processing sensory input (chemosenses and lateral line vs. visual system) between salt- and freshwater species due to fundamental differences in habitat properties. Further, some patterns of brain volumetry are linked to characteristics of body morphology. There is a positive correlation between cerebellum size and body depth, as well as the presence of a swim bladder. Since body morphology is linked to ecotypes and habitat selection, a complex character space of brain and body morphology and ecological factors together could explain better the differentiation of species into their ecological niches and may lead to a better understanding of how animals adapt to their environment.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":"98 4","pages":"171-182"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Diversity of the Brains of Ray-Finned Fishes.\",\"authors\":\"Isabelle C Gebhardt, Michael H Hofmann\",\"doi\":\"10.1159/000530243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Brains are very plastic, both in response to phenotypic diversity and to larger evolutionary trends. Differences between taxa cannot be easily attributed to either factors. Comparative morphological data on higher taxonomic levels are scarce, especially in ray-finned fishes. Here we show the great diversity of brain areas of more than 150 species of ray-finned fishes by volumetric measurements using block-face imaging. We found that differences among families or orders are more likely due to environmental needs than to systematic position. Most notable changes are present in the brain areas processing sensory input (chemosenses and lateral line vs. visual system) between salt- and freshwater species due to fundamental differences in habitat properties. Further, some patterns of brain volumetry are linked to characteristics of body morphology. There is a positive correlation between cerebellum size and body depth, as well as the presence of a swim bladder. Since body morphology is linked to ecotypes and habitat selection, a complex character space of brain and body morphology and ecological factors together could explain better the differentiation of species into their ecological niches and may lead to a better understanding of how animals adapt to their environment.</p>\",\"PeriodicalId\":56328,\"journal\":{\"name\":\"Brain Behavior and Evolution\",\"volume\":\"98 4\",\"pages\":\"171-182\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Behavior and Evolution\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1159/000530243\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Behavior and Evolution","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1159/000530243","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Brains are very plastic, both in response to phenotypic diversity and to larger evolutionary trends. Differences between taxa cannot be easily attributed to either factors. Comparative morphological data on higher taxonomic levels are scarce, especially in ray-finned fishes. Here we show the great diversity of brain areas of more than 150 species of ray-finned fishes by volumetric measurements using block-face imaging. We found that differences among families or orders are more likely due to environmental needs than to systematic position. Most notable changes are present in the brain areas processing sensory input (chemosenses and lateral line vs. visual system) between salt- and freshwater species due to fundamental differences in habitat properties. Further, some patterns of brain volumetry are linked to characteristics of body morphology. There is a positive correlation between cerebellum size and body depth, as well as the presence of a swim bladder. Since body morphology is linked to ecotypes and habitat selection, a complex character space of brain and body morphology and ecological factors together could explain better the differentiation of species into their ecological niches and may lead to a better understanding of how animals adapt to their environment.
期刊介绍:
''Brain, Behavior and Evolution'' is a journal with a loyal following, high standards, and a unique profile as the main outlet for the continuing scientific discourse on nervous system evolution. The journal publishes comparative neurobiological studies that focus on nervous system structure, function, or development in vertebrates as well as invertebrates. Approaches range from the molecular over the anatomical and physiological to the behavioral. Despite this diversity, most papers published in ''Brain, Behavior and Evolution'' include an evolutionary angle, at least in the discussion, and focus on neural mechanisms or phenomena. Some purely behavioral research may be within the journal’s scope, but the suitability of such manuscripts will be assessed on a case-by-case basis. The journal also publishes review articles that provide critical overviews of current topics in evolutionary neurobiology.