线粒体dna异质性动力学的细胞机制。

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Claudia V Pereira, Bryan L Gitschlag, Maulik R Patel
{"title":"线粒体dna异质性动力学的细胞机制。","authors":"Claudia V Pereira,&nbsp;Bryan L Gitschlag,&nbsp;Maulik R Patel","doi":"10.1080/10409238.2021.1934812","DOIUrl":null,"url":null,"abstract":"<p><p>Heteroplasmy refers to the coexistence of more than one variant of the mitochondrial genome (mtDNA). Mutated or partially deleted mtDNAs can induce chronic metabolic impairment and cause mitochondrial diseases when their heteroplasmy levels exceed a critical threshold. These mutant mtDNAs can be maternally inherited or can arise <i>de novo</i>. Compelling evidence has emerged showing that mutant mtDNA levels can vary and change in a nonrandom fashion across generations and amongst tissues of an individual. However, our lack of understanding of the basic cellular and molecular mechanisms of mtDNA heteroplasmy dynamics has made it difficult to predict who will inherit or develop mtDNA-associated diseases. More recently, with the advances in technology and the establishment of tractable model systems, insights into the mechanisms underlying the selection forces that modulate heteroplasmy dynamics are beginning to emerge. In this review, we summarize evidence from different organisms, showing that mutant mtDNA can experience both positive and negative selection. We also review the recently identified mechanisms that modulate heteroplasmy dynamics. Taken together, this is an opportune time to survey the literature and to identify key cellular pathways that can be targeted to develop therapies for diseases caused by heteroplasmic mtDNA mutations.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"56 5","pages":"510-525"},"PeriodicalIF":6.2000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2021.1934812","citationCount":"17","resultStr":"{\"title\":\"Cellular mechanisms of mtDNA heteroplasmy dynamics.\",\"authors\":\"Claudia V Pereira,&nbsp;Bryan L Gitschlag,&nbsp;Maulik R Patel\",\"doi\":\"10.1080/10409238.2021.1934812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heteroplasmy refers to the coexistence of more than one variant of the mitochondrial genome (mtDNA). Mutated or partially deleted mtDNAs can induce chronic metabolic impairment and cause mitochondrial diseases when their heteroplasmy levels exceed a critical threshold. These mutant mtDNAs can be maternally inherited or can arise <i>de novo</i>. Compelling evidence has emerged showing that mutant mtDNA levels can vary and change in a nonrandom fashion across generations and amongst tissues of an individual. However, our lack of understanding of the basic cellular and molecular mechanisms of mtDNA heteroplasmy dynamics has made it difficult to predict who will inherit or develop mtDNA-associated diseases. More recently, with the advances in technology and the establishment of tractable model systems, insights into the mechanisms underlying the selection forces that modulate heteroplasmy dynamics are beginning to emerge. In this review, we summarize evidence from different organisms, showing that mutant mtDNA can experience both positive and negative selection. We also review the recently identified mechanisms that modulate heteroplasmy dynamics. Taken together, this is an opportune time to survey the literature and to identify key cellular pathways that can be targeted to develop therapies for diseases caused by heteroplasmic mtDNA mutations.</p>\",\"PeriodicalId\":10794,\"journal\":{\"name\":\"Critical Reviews in Biochemistry and Molecular Biology\",\"volume\":\"56 5\",\"pages\":\"510-525\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10409238.2021.1934812\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10409238.2021.1934812\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10409238.2021.1934812","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 17

摘要

异质性是指一个以上的线粒体基因组(mtDNA)的变体共存。突变或部分缺失的mtdna当其异质性水平超过临界阈值时,可诱导慢性代谢损伤并导致线粒体疾病。这些突变的mtdna可以是母系遗传的,也可以从头产生。令人信服的证据表明,突变的mtDNA水平可以在代之间和个体组织之间以非随机的方式变化和改变。然而,我们对mtDNA异质性动力学的基本细胞和分子机制缺乏了解,这使得预测谁将遗传或发展mtDNA相关疾病变得困难。最近,随着技术的进步和可处理模型系统的建立,对调节异质性动力学的选择力的潜在机制的见解开始出现。在这篇综述中,我们总结了来自不同生物体的证据,表明突变的mtDNA可以经历正选择和负选择。我们也回顾了最近发现的调节异质性动力学的机制。综上所述,这是一个调查文献和确定关键细胞途径的好时机,这些途径可以靶向开发由异质mtDNA突变引起的疾病的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cellular mechanisms of mtDNA heteroplasmy dynamics.

Heteroplasmy refers to the coexistence of more than one variant of the mitochondrial genome (mtDNA). Mutated or partially deleted mtDNAs can induce chronic metabolic impairment and cause mitochondrial diseases when their heteroplasmy levels exceed a critical threshold. These mutant mtDNAs can be maternally inherited or can arise de novo. Compelling evidence has emerged showing that mutant mtDNA levels can vary and change in a nonrandom fashion across generations and amongst tissues of an individual. However, our lack of understanding of the basic cellular and molecular mechanisms of mtDNA heteroplasmy dynamics has made it difficult to predict who will inherit or develop mtDNA-associated diseases. More recently, with the advances in technology and the establishment of tractable model systems, insights into the mechanisms underlying the selection forces that modulate heteroplasmy dynamics are beginning to emerge. In this review, we summarize evidence from different organisms, showing that mutant mtDNA can experience both positive and negative selection. We also review the recently identified mechanisms that modulate heteroplasmy dynamics. Taken together, this is an opportune time to survey the literature and to identify key cellular pathways that can be targeted to develop therapies for diseases caused by heteroplasmic mtDNA mutations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.90
自引率
0.00%
发文量
6
期刊介绍: As the discipline of biochemistry and molecular biology have greatly advanced in the last quarter century, significant contributions have been made towards the advancement of general medicine, genetics, immunology, developmental biology, and biophysics. Investigators in a wide range of disciplines increasingly require an appreciation of the significance of current biochemical and molecular biology advances while, members of the biochemical and molecular biology community itself seek concise information on advances in areas remote from their own specialties. Critical Reviews in Biochemistry and Molecular Biology believes that well-written review articles prove an effective device for the integration and meaningful comprehension of vast, often contradictory, literature. Review articles also provide an opportunity for creative scholarship by synthesizing known facts, fruitful hypotheses, and new concepts. Accordingly, Critical Reviews in Biochemistry and Molecular Biology publishes high-quality reviews that organize, evaluate, and present the current status of high-impact, current issues in the area of biochemistry and molecular biology. Topics are selected on the advice of an advisory board of outstanding scientists, who also suggest authors of special competence. The topics chosen are sufficiently broad to interest a wide audience of readers, yet focused enough to be within the competence of a single author. Authors are chosen based on their activity in the field and their proven ability to produce a well-written publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信