Beatrice Bernardi, Florian Michling, Judith Muno-Bender, Katrin Matti, Jürgen Wendland
{"title":"香槟Epernay Geisenheim葡萄酒酵母的基因组序列揭示了其杂交性质。","authors":"Beatrice Bernardi, Florian Michling, Judith Muno-Bender, Katrin Matti, Jürgen Wendland","doi":"10.1093/femsyr/foad033","DOIUrl":null,"url":null,"abstract":"<p><p>Lager yeasts are hybrids between Saccharomyces cerevisiae and S. eubayanus. Wine yeast biodiversity, however, has only recently been discovered to include besides pure S. cerevisiae strains also hybrids between different Saccharomyces yeasts as well as introgressions from non-Saccharomyces species. Here, we analysed the genome of the Champagne Epernay Geisenheim (CEG) wine yeast. This yeast is an allotetraploid (4n - 1) hybrid of S. cerevisiae harbouring a substantially reduced S. kudriavzevii genome contributing only 1/3 of a full genome equivalent. We identified a novel oligopeptide transporter gene, FOT4, in CEG located on chromosome XVI. FOT genes were originally derived from Torulaspora microellipsoides and FOT4 arose by non-allelic recombination between adjacent FOT1 and FOT2 genes. Fermentations of CEG in Riesling and Müller-Thurgau musts were compared with the S. cerevisiae Geisenheim wine yeast GHM, which does not carry FOT genes. At low temperature (10°C), CEG completed fermentations faster and produced increased levels of higher alcohols (e.g. isoamyl alcohol). At higher temperature (18°C), CEG produced higher amounts of the pineapple-like alkyl esters i-butyric and propionic acid ethyl esters compared to GHM. The hybrid nature of CEG thus provides advantages in grape must fermentations over S. cerevisiae wine yeasts, especially with regard to aroma production.</p>","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"23 ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The genome sequence of the Champagne Epernay Geisenheim wine yeast reveals its hybrid nature.\",\"authors\":\"Beatrice Bernardi, Florian Michling, Judith Muno-Bender, Katrin Matti, Jürgen Wendland\",\"doi\":\"10.1093/femsyr/foad033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lager yeasts are hybrids between Saccharomyces cerevisiae and S. eubayanus. Wine yeast biodiversity, however, has only recently been discovered to include besides pure S. cerevisiae strains also hybrids between different Saccharomyces yeasts as well as introgressions from non-Saccharomyces species. Here, we analysed the genome of the Champagne Epernay Geisenheim (CEG) wine yeast. This yeast is an allotetraploid (4n - 1) hybrid of S. cerevisiae harbouring a substantially reduced S. kudriavzevii genome contributing only 1/3 of a full genome equivalent. We identified a novel oligopeptide transporter gene, FOT4, in CEG located on chromosome XVI. FOT genes were originally derived from Torulaspora microellipsoides and FOT4 arose by non-allelic recombination between adjacent FOT1 and FOT2 genes. Fermentations of CEG in Riesling and Müller-Thurgau musts were compared with the S. cerevisiae Geisenheim wine yeast GHM, which does not carry FOT genes. At low temperature (10°C), CEG completed fermentations faster and produced increased levels of higher alcohols (e.g. isoamyl alcohol). At higher temperature (18°C), CEG produced higher amounts of the pineapple-like alkyl esters i-butyric and propionic acid ethyl esters compared to GHM. The hybrid nature of CEG thus provides advantages in grape must fermentations over S. cerevisiae wine yeasts, especially with regard to aroma production.</p>\",\"PeriodicalId\":12290,\"journal\":{\"name\":\"FEMS yeast research\",\"volume\":\"23 \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS yeast research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsyr/foad033\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foad033","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The genome sequence of the Champagne Epernay Geisenheim wine yeast reveals its hybrid nature.
Lager yeasts are hybrids between Saccharomyces cerevisiae and S. eubayanus. Wine yeast biodiversity, however, has only recently been discovered to include besides pure S. cerevisiae strains also hybrids between different Saccharomyces yeasts as well as introgressions from non-Saccharomyces species. Here, we analysed the genome of the Champagne Epernay Geisenheim (CEG) wine yeast. This yeast is an allotetraploid (4n - 1) hybrid of S. cerevisiae harbouring a substantially reduced S. kudriavzevii genome contributing only 1/3 of a full genome equivalent. We identified a novel oligopeptide transporter gene, FOT4, in CEG located on chromosome XVI. FOT genes were originally derived from Torulaspora microellipsoides and FOT4 arose by non-allelic recombination between adjacent FOT1 and FOT2 genes. Fermentations of CEG in Riesling and Müller-Thurgau musts were compared with the S. cerevisiae Geisenheim wine yeast GHM, which does not carry FOT genes. At low temperature (10°C), CEG completed fermentations faster and produced increased levels of higher alcohols (e.g. isoamyl alcohol). At higher temperature (18°C), CEG produced higher amounts of the pineapple-like alkyl esters i-butyric and propionic acid ethyl esters compared to GHM. The hybrid nature of CEG thus provides advantages in grape must fermentations over S. cerevisiae wine yeasts, especially with regard to aroma production.
期刊介绍:
FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.