Shannon R Gilstrap, Joanna M Hobson, Michael A Owens, Dyan M White, Melissa J Sammy, Scott Ballinger, Robert E Sorge, Burel R Goodin
{"title":"HIV和慢性疼痛患者急性暴露于实验性疼痛测试后的线粒体反应。","authors":"Shannon R Gilstrap, Joanna M Hobson, Michael A Owens, Dyan M White, Melissa J Sammy, Scott Ballinger, Robert E Sorge, Burel R Goodin","doi":"10.1177/17448069231195975","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Physical stressors can cause a physiological response that can contribute to an increase in mitochondrial dysfunction and Mitochondrial DNA damage (mtDNA damage). People living with HIV (PWH) are more likely to suffer from chronic pain and may be more susceptible to mitochondrial dysfunction following exposure to a stressor. We used Quantitative Sensory Testing (QST) as an acute painful stressor in order to investigate whether PWH with/without chronic pain show differential mitochondrial physiological responses. <b>Methods:</b> The current study included PWH with (<i>n</i> = 26), and without (<i>n</i> = 29), chronic pain. Participants completed a single session that lasted approximately 180 min, including QST. Blood was taken prior to and following the QST battery for assays measuring mtDNA damage, mtDNA copy number, and mtDNA damage-associated molecular pattern (DAMP) levels (i.e., ND1 and ND6). <b>Results:</b> We examined differences between those with and without pain on various indicators of mitochondrial reactivity following exposure to QST. However, only ND6 and mtDNA damage were shown to be statistically significant between pain groups. <b>Conclusion:</b> PWH with chronic pain showed greater mitochondrial reactivity to laboratory stressors. Consequently, PWH and chronic pain may be more susceptible to conditions in which mitochondrial damage/dysfunction play a central role, such as cognitive decline.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/a1/10.1177_17448069231195975.PMC10467217.pdf","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial reactivity following acute exposure to experimental pain testing in people with HIV and chronic pain.\",\"authors\":\"Shannon R Gilstrap, Joanna M Hobson, Michael A Owens, Dyan M White, Melissa J Sammy, Scott Ballinger, Robert E Sorge, Burel R Goodin\",\"doi\":\"10.1177/17448069231195975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Physical stressors can cause a physiological response that can contribute to an increase in mitochondrial dysfunction and Mitochondrial DNA damage (mtDNA damage). People living with HIV (PWH) are more likely to suffer from chronic pain and may be more susceptible to mitochondrial dysfunction following exposure to a stressor. We used Quantitative Sensory Testing (QST) as an acute painful stressor in order to investigate whether PWH with/without chronic pain show differential mitochondrial physiological responses. <b>Methods:</b> The current study included PWH with (<i>n</i> = 26), and without (<i>n</i> = 29), chronic pain. Participants completed a single session that lasted approximately 180 min, including QST. Blood was taken prior to and following the QST battery for assays measuring mtDNA damage, mtDNA copy number, and mtDNA damage-associated molecular pattern (DAMP) levels (i.e., ND1 and ND6). <b>Results:</b> We examined differences between those with and without pain on various indicators of mitochondrial reactivity following exposure to QST. However, only ND6 and mtDNA damage were shown to be statistically significant between pain groups. <b>Conclusion:</b> PWH with chronic pain showed greater mitochondrial reactivity to laboratory stressors. Consequently, PWH and chronic pain may be more susceptible to conditions in which mitochondrial damage/dysfunction play a central role, such as cognitive decline.</p>\",\"PeriodicalId\":19010,\"journal\":{\"name\":\"Molecular Pain\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/a1/10.1177_17448069231195975.PMC10467217.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17448069231195975\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069231195975","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Mitochondrial reactivity following acute exposure to experimental pain testing in people with HIV and chronic pain.
Background: Physical stressors can cause a physiological response that can contribute to an increase in mitochondrial dysfunction and Mitochondrial DNA damage (mtDNA damage). People living with HIV (PWH) are more likely to suffer from chronic pain and may be more susceptible to mitochondrial dysfunction following exposure to a stressor. We used Quantitative Sensory Testing (QST) as an acute painful stressor in order to investigate whether PWH with/without chronic pain show differential mitochondrial physiological responses. Methods: The current study included PWH with (n = 26), and without (n = 29), chronic pain. Participants completed a single session that lasted approximately 180 min, including QST. Blood was taken prior to and following the QST battery for assays measuring mtDNA damage, mtDNA copy number, and mtDNA damage-associated molecular pattern (DAMP) levels (i.e., ND1 and ND6). Results: We examined differences between those with and without pain on various indicators of mitochondrial reactivity following exposure to QST. However, only ND6 and mtDNA damage were shown to be statistically significant between pain groups. Conclusion: PWH with chronic pain showed greater mitochondrial reactivity to laboratory stressors. Consequently, PWH and chronic pain may be more susceptible to conditions in which mitochondrial damage/dysfunction play a central role, such as cognitive decline.
期刊介绍:
Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.