羊水两感觉丘脑核局部回路神经元的进化。

IF 2.1 4区 心理学 Q3 BEHAVIORAL SCIENCES
Brain Behavior and Evolution Pub Date : 2023-01-01 Epub Date: 2023-03-27 DOI:10.1159/000530316
Michael B Pritz
{"title":"羊水两感觉丘脑核局部回路神经元的进化。","authors":"Michael B Pritz","doi":"10.1159/000530316","DOIUrl":null,"url":null,"abstract":"<p><p>Local circuit neurons are present in the thalamus of all vertebrates where they are considered inhibitory. They play an important role in computation and influence the transmission of information from the thalamus to the telencephalon. In mammals, the percentage of local circuit neurons in the dorsal lateral geniculate nucleus remains relatively constant across a variety of species. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body in mammals vary significantly depending on the species examined. To explain these observations, the numbers of local circuit neurons were investigated by reviewing the literature on this subject in these two nuclei in mammals and their respective homologs in sauropsids and by providing additional data on a crocodilian. Local circuit neurons are present in the dorsal geniculate nucleus of sauropsids just as is the case for this nucleus in mammals. However, sauropsids lack local circuits neurons in the auditory thalamic nuclei homologous to the ventral division of the medial geniculate body. A cladistic analysis of these results suggests that differences in the numbers of local circuit neurons in the dorsal lateral geniculate nucleus of amniotes reflect an elaboration of these local circuit neurons as a result of evolution from a common ancestor. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body changed independently in several mammalian lineages.</p>","PeriodicalId":56328,"journal":{"name":"Brain Behavior and Evolution","volume":"98 4","pages":"183-193"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of Local Circuit Neurons in Two Sensory Thalamic Nuclei in Amniotes.\",\"authors\":\"Michael B Pritz\",\"doi\":\"10.1159/000530316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Local circuit neurons are present in the thalamus of all vertebrates where they are considered inhibitory. They play an important role in computation and influence the transmission of information from the thalamus to the telencephalon. In mammals, the percentage of local circuit neurons in the dorsal lateral geniculate nucleus remains relatively constant across a variety of species. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body in mammals vary significantly depending on the species examined. To explain these observations, the numbers of local circuit neurons were investigated by reviewing the literature on this subject in these two nuclei in mammals and their respective homologs in sauropsids and by providing additional data on a crocodilian. Local circuit neurons are present in the dorsal geniculate nucleus of sauropsids just as is the case for this nucleus in mammals. However, sauropsids lack local circuits neurons in the auditory thalamic nuclei homologous to the ventral division of the medial geniculate body. A cladistic analysis of these results suggests that differences in the numbers of local circuit neurons in the dorsal lateral geniculate nucleus of amniotes reflect an elaboration of these local circuit neurons as a result of evolution from a common ancestor. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body changed independently in several mammalian lineages.</p>\",\"PeriodicalId\":56328,\"journal\":{\"name\":\"Brain Behavior and Evolution\",\"volume\":\"98 4\",\"pages\":\"183-193\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Behavior and Evolution\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1159/000530316\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Behavior and Evolution","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1159/000530316","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

所有脊椎动物的丘脑中都存在局部回路神经元,它们被认为是抑制性的。它们在计算中起着重要作用,并影响信息从丘脑到端脑的传输。在哺乳动物中,背外侧膝状体核中局部回路神经元的百分比在各种物种中保持相对恒定。相反,哺乳动物内侧膝状体腹侧分裂的局部回路神经元的数量因所检查的物种而异。为了解释这些观察结果,通过回顾哺乳动物这两个细胞核中的局部回路神经元的数量及其在蜥脚类中各自的同源物,并通过提供鳄鱼的额外数据,对局部回路神经元数量进行了研究。蜥脚类的背侧膝状体核中存在局部回路神经元,就像哺乳动物的背侧膝状体核一样。然而,蜥脚类在听觉丘脑核中缺乏与内侧膝状体腹侧分裂同源的局部回路神经元。对这些结果的分支分析表明,羊膜背外侧膝状体核中局部回路神经元数量的差异反映了这些局部回路神经元是从共同祖先进化而来的。相反,在几个哺乳动物谱系中,内侧膝状体腹侧分裂的局部回路神经元的数量独立变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolution of Local Circuit Neurons in Two Sensory Thalamic Nuclei in Amniotes.

Local circuit neurons are present in the thalamus of all vertebrates where they are considered inhibitory. They play an important role in computation and influence the transmission of information from the thalamus to the telencephalon. In mammals, the percentage of local circuit neurons in the dorsal lateral geniculate nucleus remains relatively constant across a variety of species. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body in mammals vary significantly depending on the species examined. To explain these observations, the numbers of local circuit neurons were investigated by reviewing the literature on this subject in these two nuclei in mammals and their respective homologs in sauropsids and by providing additional data on a crocodilian. Local circuit neurons are present in the dorsal geniculate nucleus of sauropsids just as is the case for this nucleus in mammals. However, sauropsids lack local circuits neurons in the auditory thalamic nuclei homologous to the ventral division of the medial geniculate body. A cladistic analysis of these results suggests that differences in the numbers of local circuit neurons in the dorsal lateral geniculate nucleus of amniotes reflect an elaboration of these local circuit neurons as a result of evolution from a common ancestor. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body changed independently in several mammalian lineages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brain Behavior and Evolution
Brain Behavior and Evolution 医学-行为科学
CiteScore
3.10
自引率
23.50%
发文量
31
审稿时长
>12 weeks
期刊介绍: ''Brain, Behavior and Evolution'' is a journal with a loyal following, high standards, and a unique profile as the main outlet for the continuing scientific discourse on nervous system evolution. The journal publishes comparative neurobiological studies that focus on nervous system structure, function, or development in vertebrates as well as invertebrates. Approaches range from the molecular over the anatomical and physiological to the behavioral. Despite this diversity, most papers published in ''Brain, Behavior and Evolution'' include an evolutionary angle, at least in the discussion, and focus on neural mechanisms or phenomena. Some purely behavioral research may be within the journal’s scope, but the suitability of such manuscripts will be assessed on a case-by-case basis. The journal also publishes review articles that provide critical overviews of current topics in evolutionary neurobiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信