Yao Wang, Yufei Shi, Zhipeng He, Ziyi Chen, Yi Zhou
{"title":"结合时间和空间注意力进行癫痫发作预测。","authors":"Yao Wang, Yufei Shi, Zhipeng He, Ziyi Chen, Yi Zhou","doi":"10.1007/s13755-023-00239-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Approximately 1% of the world population is currently suffering from epilepsy. Successful seizure prediction is necessary for those patients. Influenced by neurons in their own and surrounding locations, the electroencephalogram (EEG) signals collected by scalp electrodes carry information of spatiotemporal interactions. Therefore, it is a great challenge to exploit the spatiotemporal information of EEG signals fully.</p><p><strong>Methods: </strong>In this paper, a new seizure prediction model called Gatformer is proposed by fusing the graph attention network (GAT) and the Transformer. The temporal and spatial attention are combined to extract EEG information from the perspective of spatiotemporal interactions. The model aims to explore the temporal dependence of single-channel EEG signals and the spatial correlations among multi-channel EEG signals. It can automatically identify the most noteworthy interaction in brain regions and achieve accurate seizure prediction.</p><p><strong>Results: </strong>Compared with the baseline models, the performance of our model is significantly improved. The false prediction rate (FPR) on the private dataset is 0.0064/h. The average accuracy, specificity and sensitivity are 98.25%, 99.36% and 97.65%.</p><p><strong>Conclusion: </strong>The proposed model is comparable to the state of the arts. Experiments on different datasets show that it has good robustness and generalization performance. The high sensitivity and low FPR prove that this model has great potential to realize clinical assistance for diagnosis and treatment.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"38"},"PeriodicalIF":4.7000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447681/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combining temporal and spatial attention for seizure prediction.\",\"authors\":\"Yao Wang, Yufei Shi, Zhipeng He, Ziyi Chen, Yi Zhou\",\"doi\":\"10.1007/s13755-023-00239-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Approximately 1% of the world population is currently suffering from epilepsy. Successful seizure prediction is necessary for those patients. Influenced by neurons in their own and surrounding locations, the electroencephalogram (EEG) signals collected by scalp electrodes carry information of spatiotemporal interactions. Therefore, it is a great challenge to exploit the spatiotemporal information of EEG signals fully.</p><p><strong>Methods: </strong>In this paper, a new seizure prediction model called Gatformer is proposed by fusing the graph attention network (GAT) and the Transformer. The temporal and spatial attention are combined to extract EEG information from the perspective of spatiotemporal interactions. The model aims to explore the temporal dependence of single-channel EEG signals and the spatial correlations among multi-channel EEG signals. It can automatically identify the most noteworthy interaction in brain regions and achieve accurate seizure prediction.</p><p><strong>Results: </strong>Compared with the baseline models, the performance of our model is significantly improved. The false prediction rate (FPR) on the private dataset is 0.0064/h. The average accuracy, specificity and sensitivity are 98.25%, 99.36% and 97.65%.</p><p><strong>Conclusion: </strong>The proposed model is comparable to the state of the arts. Experiments on different datasets show that it has good robustness and generalization performance. The high sensitivity and low FPR prove that this model has great potential to realize clinical assistance for diagnosis and treatment.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":\"11 1\",\"pages\":\"38\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10447681/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-023-00239-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00239-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Combining temporal and spatial attention for seizure prediction.
Purpose: Approximately 1% of the world population is currently suffering from epilepsy. Successful seizure prediction is necessary for those patients. Influenced by neurons in their own and surrounding locations, the electroencephalogram (EEG) signals collected by scalp electrodes carry information of spatiotemporal interactions. Therefore, it is a great challenge to exploit the spatiotemporal information of EEG signals fully.
Methods: In this paper, a new seizure prediction model called Gatformer is proposed by fusing the graph attention network (GAT) and the Transformer. The temporal and spatial attention are combined to extract EEG information from the perspective of spatiotemporal interactions. The model aims to explore the temporal dependence of single-channel EEG signals and the spatial correlations among multi-channel EEG signals. It can automatically identify the most noteworthy interaction in brain regions and achieve accurate seizure prediction.
Results: Compared with the baseline models, the performance of our model is significantly improved. The false prediction rate (FPR) on the private dataset is 0.0064/h. The average accuracy, specificity and sensitivity are 98.25%, 99.36% and 97.65%.
Conclusion: The proposed model is comparable to the state of the arts. Experiments on different datasets show that it has good robustness and generalization performance. The high sensitivity and low FPR prove that this model has great potential to realize clinical assistance for diagnosis and treatment.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.