{"title":"对酚酸进行硅学和体外分析,以鉴定作为抗菌剂和抗癌剂的潜在 DHFR 抑制剂。","authors":"Renu Sehrawat, Priyanka Rathee, Pooja Rathee, Sarita Khatkar, Esra Küpeli Akkol, Anurag Khatkar","doi":"10.2174/1389203724666230825142558","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>DHFR is an indispensable enzyme required for the survival of almost all prokaryotic and eukaryotic cells, making it an attractive molecular target for drug design.</p><p><strong>Objective: </strong>In this study, a combined <i>in silico</i> and <i>in vitro</i> approach was utilized to screen out potential anticancer and antimicrobial agents by using DHFR PDB ID 2W9S (for antimicrobial) and 1U72 (for anticancer).</p><p><strong>Methods: </strong>Computational work was performed using Maestro Schrodinger Glide software. The DHFR inhibitory activity of the selected compounds was assessed using the DHFR test kit (CS0340-Sigma- Aldrich).</p><p><strong>Results: </strong>Exhaustive analysis of <i>in silico</i> results revealed that some natural phenolic acids have a good docking score when compared to standards, i.e., trimethoprim and methotrexate, and have astonishing interactions with crucial amino acid residues available in the binding pocket of DHFR, such as Phe 92, Asp 27, Ser 49, Asn 18, and Tyr 98. In particular, digallic acid and chlorogenic acid have amazing interactions with docking scores of -9.9 kcal/mol and -9.6 kcal/mol, respectively, for the targeted protein 2W9S. Docking scores of -10.3 kcal/mol and -10.2 kcal/mol, respectively, for targeted protein 1U72. The best hits were then tested <i>in vitro</i> to evaluate the DHFR inhibitory activity of the compounds. DHFR inhibition activity results are in correlation with molecular docking results.</p><p><strong>Conclusion: </strong><i>In silico</i> and <i>in vitro</i> results confirmed the good binding and inhibitory activity of some phenolic acids to the modeled target proteins. Among all the studied natural phenolic acids, chlorogenic acid, digallic acid, and rosmarinic acid appeared to be the most potential leads for future chemical alteration. This study can provide significant speculative guidance for the design and development of potent DHFR inhibitors in the future by using these compounds as leads.</p>","PeriodicalId":10859,"journal":{"name":"Current protein & peptide science","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In Silico</i> and <i>In vitro</i> Analysis of Phenolic Acids for Identification of Potential DHFR Inhibitors as Antimicrobial and Anticancer Agents.\",\"authors\":\"Renu Sehrawat, Priyanka Rathee, Pooja Rathee, Sarita Khatkar, Esra Küpeli Akkol, Anurag Khatkar\",\"doi\":\"10.2174/1389203724666230825142558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>DHFR is an indispensable enzyme required for the survival of almost all prokaryotic and eukaryotic cells, making it an attractive molecular target for drug design.</p><p><strong>Objective: </strong>In this study, a combined <i>in silico</i> and <i>in vitro</i> approach was utilized to screen out potential anticancer and antimicrobial agents by using DHFR PDB ID 2W9S (for antimicrobial) and 1U72 (for anticancer).</p><p><strong>Methods: </strong>Computational work was performed using Maestro Schrodinger Glide software. The DHFR inhibitory activity of the selected compounds was assessed using the DHFR test kit (CS0340-Sigma- Aldrich).</p><p><strong>Results: </strong>Exhaustive analysis of <i>in silico</i> results revealed that some natural phenolic acids have a good docking score when compared to standards, i.e., trimethoprim and methotrexate, and have astonishing interactions with crucial amino acid residues available in the binding pocket of DHFR, such as Phe 92, Asp 27, Ser 49, Asn 18, and Tyr 98. In particular, digallic acid and chlorogenic acid have amazing interactions with docking scores of -9.9 kcal/mol and -9.6 kcal/mol, respectively, for the targeted protein 2W9S. Docking scores of -10.3 kcal/mol and -10.2 kcal/mol, respectively, for targeted protein 1U72. The best hits were then tested <i>in vitro</i> to evaluate the DHFR inhibitory activity of the compounds. DHFR inhibition activity results are in correlation with molecular docking results.</p><p><strong>Conclusion: </strong><i>In silico</i> and <i>in vitro</i> results confirmed the good binding and inhibitory activity of some phenolic acids to the modeled target proteins. Among all the studied natural phenolic acids, chlorogenic acid, digallic acid, and rosmarinic acid appeared to be the most potential leads for future chemical alteration. This study can provide significant speculative guidance for the design and development of potent DHFR inhibitors in the future by using these compounds as leads.</p>\",\"PeriodicalId\":10859,\"journal\":{\"name\":\"Current protein & peptide science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current protein & peptide science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/1389203724666230825142558\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current protein & peptide science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/1389203724666230825142558","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
In Silico and In vitro Analysis of Phenolic Acids for Identification of Potential DHFR Inhibitors as Antimicrobial and Anticancer Agents.
Background: DHFR is an indispensable enzyme required for the survival of almost all prokaryotic and eukaryotic cells, making it an attractive molecular target for drug design.
Objective: In this study, a combined in silico and in vitro approach was utilized to screen out potential anticancer and antimicrobial agents by using DHFR PDB ID 2W9S (for antimicrobial) and 1U72 (for anticancer).
Methods: Computational work was performed using Maestro Schrodinger Glide software. The DHFR inhibitory activity of the selected compounds was assessed using the DHFR test kit (CS0340-Sigma- Aldrich).
Results: Exhaustive analysis of in silico results revealed that some natural phenolic acids have a good docking score when compared to standards, i.e., trimethoprim and methotrexate, and have astonishing interactions with crucial amino acid residues available in the binding pocket of DHFR, such as Phe 92, Asp 27, Ser 49, Asn 18, and Tyr 98. In particular, digallic acid and chlorogenic acid have amazing interactions with docking scores of -9.9 kcal/mol and -9.6 kcal/mol, respectively, for the targeted protein 2W9S. Docking scores of -10.3 kcal/mol and -10.2 kcal/mol, respectively, for targeted protein 1U72. The best hits were then tested in vitro to evaluate the DHFR inhibitory activity of the compounds. DHFR inhibition activity results are in correlation with molecular docking results.
Conclusion: In silico and in vitro results confirmed the good binding and inhibitory activity of some phenolic acids to the modeled target proteins. Among all the studied natural phenolic acids, chlorogenic acid, digallic acid, and rosmarinic acid appeared to be the most potential leads for future chemical alteration. This study can provide significant speculative guidance for the design and development of potent DHFR inhibitors in the future by using these compounds as leads.
期刊介绍:
Current Protein & Peptide Science publishes full-length/mini review articles on specific aspects involving proteins, peptides, and interactions between the enzymes, the binding interactions of hormones and their receptors; the properties of transcription factors and other molecules that regulate gene expression; the reactions leading to the immune response; the process of signal transduction; the structure and function of proteins involved in the cytoskeleton and molecular motors; the properties of membrane channels and transporters; and the generation and storage of metabolic energy. In addition, reviews of experimental studies of protein folding and design are given special emphasis. Manuscripts submitted to Current Protein and Peptide Science should cover a field by discussing research from the leading laboratories in a field and should pose questions for future studies. Original papers, research articles and letter articles/short communications are not considered for publication in Current Protein & Peptide Science.