Chengcheng Jiang, Francesco Secundo, Xiangzhao Mao
{"title":"扩大了κ-卡拉胶酶OUC-FaKC16A在由κ-卡拉菜胶和糠聚糖制备低聚糖时的应用范围。","authors":"Chengcheng Jiang, Francesco Secundo, Xiangzhao Mao","doi":"10.1007/s42995-023-00181-2","DOIUrl":null,"url":null,"abstract":"<p><p>Carrageenan oligosaccharides are important products that have demonstrated numerous bioactivities useful in the food, medicine, and cosmetics industries. However, the specific structure-function relationships of carrageenan oligosaccharides are not clearly described due to the deficiency of high specific carrageenases. Here, a truncated mutant OUC-FaKC16Q based on the reported <i>κ</i>-neocarratetrose (N<i>κ</i>4)-producing <i>κ</i>-carrageenase OUC-FaKC16A from <i>Flavobacterium algicola</i> was constructed and further studied. After truncating the C-terminal Por_Secre_tail (PorS) domain (responsible for substrate binding), the catalytic efficiency and temperature stability decreased to a certain extent. Surprisingly, this truncation also enabled OUC-FaKC16Q to hydrolyze N<i>κ</i>4 into <i>κ</i>-neocarrabiose (N<i>κ</i>2). The offset of Arg<sub>265</sub> residue in OUC-FaKC16Q may explain this change. Moreover, the high catalytic abilities, the main products, and the degradation modes of OUC-FaKC16A and OUC-FaKC16Q toward furcellaran were also demonstrated. Data suggested OUC-FaKC16A and OUC-FaKC16Q could hydrolyze furcellaran to produce mainly the desulfated oligosaccharides DA-G-(DA-G4S)<sub>2</sub> and DA-G-DA-G4S, respectively. As a result, the spectrum of products of <i>κ</i>-carrageenase OUC-FaKC16A has been fully expanded in this study, indicating its promising potential for application in the biomanufacturing of carrageenan oligosaccharides with specific structures.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00181-2.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"5 3","pages":"387-399"},"PeriodicalIF":5.8000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449746/pdf/","citationCount":"0","resultStr":"{\"title\":\"Expanding the application range of the <i>κ</i>‑carrageenase OUC-FaKC16A when preparing oligosaccharides from <i>κ</i>-carrageenan and furcellaran.\",\"authors\":\"Chengcheng Jiang, Francesco Secundo, Xiangzhao Mao\",\"doi\":\"10.1007/s42995-023-00181-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Carrageenan oligosaccharides are important products that have demonstrated numerous bioactivities useful in the food, medicine, and cosmetics industries. However, the specific structure-function relationships of carrageenan oligosaccharides are not clearly described due to the deficiency of high specific carrageenases. Here, a truncated mutant OUC-FaKC16Q based on the reported <i>κ</i>-neocarratetrose (N<i>κ</i>4)-producing <i>κ</i>-carrageenase OUC-FaKC16A from <i>Flavobacterium algicola</i> was constructed and further studied. After truncating the C-terminal Por_Secre_tail (PorS) domain (responsible for substrate binding), the catalytic efficiency and temperature stability decreased to a certain extent. Surprisingly, this truncation also enabled OUC-FaKC16Q to hydrolyze N<i>κ</i>4 into <i>κ</i>-neocarrabiose (N<i>κ</i>2). The offset of Arg<sub>265</sub> residue in OUC-FaKC16Q may explain this change. Moreover, the high catalytic abilities, the main products, and the degradation modes of OUC-FaKC16A and OUC-FaKC16Q toward furcellaran were also demonstrated. Data suggested OUC-FaKC16A and OUC-FaKC16Q could hydrolyze furcellaran to produce mainly the desulfated oligosaccharides DA-G-(DA-G4S)<sub>2</sub> and DA-G-DA-G4S, respectively. As a result, the spectrum of products of <i>κ</i>-carrageenase OUC-FaKC16A has been fully expanded in this study, indicating its promising potential for application in the biomanufacturing of carrageenan oligosaccharides with specific structures.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s42995-023-00181-2.</p>\",\"PeriodicalId\":53218,\"journal\":{\"name\":\"Marine Life Science & Technology\",\"volume\":\"5 3\",\"pages\":\"387-399\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449746/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Life Science & Technology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42995-023-00181-2\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-023-00181-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
Expanding the application range of the κ‑carrageenase OUC-FaKC16A when preparing oligosaccharides from κ-carrageenan and furcellaran.
Carrageenan oligosaccharides are important products that have demonstrated numerous bioactivities useful in the food, medicine, and cosmetics industries. However, the specific structure-function relationships of carrageenan oligosaccharides are not clearly described due to the deficiency of high specific carrageenases. Here, a truncated mutant OUC-FaKC16Q based on the reported κ-neocarratetrose (Nκ4)-producing κ-carrageenase OUC-FaKC16A from Flavobacterium algicola was constructed and further studied. After truncating the C-terminal Por_Secre_tail (PorS) domain (responsible for substrate binding), the catalytic efficiency and temperature stability decreased to a certain extent. Surprisingly, this truncation also enabled OUC-FaKC16Q to hydrolyze Nκ4 into κ-neocarrabiose (Nκ2). The offset of Arg265 residue in OUC-FaKC16Q may explain this change. Moreover, the high catalytic abilities, the main products, and the degradation modes of OUC-FaKC16A and OUC-FaKC16Q toward furcellaran were also demonstrated. Data suggested OUC-FaKC16A and OUC-FaKC16Q could hydrolyze furcellaran to produce mainly the desulfated oligosaccharides DA-G-(DA-G4S)2 and DA-G-DA-G4S, respectively. As a result, the spectrum of products of κ-carrageenase OUC-FaKC16A has been fully expanded in this study, indicating its promising potential for application in the biomanufacturing of carrageenan oligosaccharides with specific structures.
Supplementary information: The online version contains supplementary material available at 10.1007/s42995-023-00181-2.
期刊介绍:
Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats.
The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.