Dmitry A. Semchonok , Fotis L. Kyrilis , Farzad Hamdi , Panagiotis L. Kastritis
{"title":"异质生化组分的低温电镜分析阐明了来自多细胞嗜热真核生物的多种蛋白质复合物","authors":"Dmitry A. Semchonok , Fotis L. Kyrilis , Farzad Hamdi , Panagiotis L. Kastritis","doi":"10.1016/j.yjsbx.2023.100094","DOIUrl":null,"url":null,"abstract":"<div><p>Biomolecular complexes and their interactions govern cellular structure and function. Understanding their architecture is a prerequisite for dissecting the cell's inner workings, but their higher-order assembly is often transient and challenging for structural analysis. Here, we performed cryo-EM on a single, highly heterogeneous biochemical fraction derived from <em>Chaetomium thermophilum</em> cell extracts to visualize the biomolecular content of the multicellular eukaryote. After cryo-EM single-particle image processing, results showed that a simultaneous three-dimensional structural characterization of multiple chemically diverse biomacromolecules is feasible. Namely, the thermophilic, eukaryotic complexes of (a) ATP citrate-lyase, (b) Hsp90, (c) 20S proteasome, (d) Hsp60 and (e) UDP-glucose pyrophosphorylase were characterized. In total, all five complexes have been structurally dissected in a thermophilic eukaryote in a total imaged sample area of 190.64 μm<sup>2</sup>, and two, in particular, 20S proteasome and Hsp60, exhibit side-chain resolution features. The <em>C. thermophilum</em> Hsp60 near-atomic model was resolved at 3.46 Å (FSC = 0.143) and shows a hinge-like conformational change of its equatorial domain, highly similar to the one previously shown for its bacterial orthologue, GroEL. This work demonstrates that cryo-EM of cell extracts will greatly accelerate the structural analysis of cellular complexes and provide unprecedented opportunities to annotate architectures of biomolecules in a holistic approach.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451023/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cryo-EM of a heterogeneous biochemical fraction elucidates multiple protein complexes from a multicellular thermophilic eukaryote\",\"authors\":\"Dmitry A. Semchonok , Fotis L. Kyrilis , Farzad Hamdi , Panagiotis L. Kastritis\",\"doi\":\"10.1016/j.yjsbx.2023.100094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biomolecular complexes and their interactions govern cellular structure and function. Understanding their architecture is a prerequisite for dissecting the cell's inner workings, but their higher-order assembly is often transient and challenging for structural analysis. Here, we performed cryo-EM on a single, highly heterogeneous biochemical fraction derived from <em>Chaetomium thermophilum</em> cell extracts to visualize the biomolecular content of the multicellular eukaryote. After cryo-EM single-particle image processing, results showed that a simultaneous three-dimensional structural characterization of multiple chemically diverse biomacromolecules is feasible. Namely, the thermophilic, eukaryotic complexes of (a) ATP citrate-lyase, (b) Hsp90, (c) 20S proteasome, (d) Hsp60 and (e) UDP-glucose pyrophosphorylase were characterized. In total, all five complexes have been structurally dissected in a thermophilic eukaryote in a total imaged sample area of 190.64 μm<sup>2</sup>, and two, in particular, 20S proteasome and Hsp60, exhibit side-chain resolution features. The <em>C. thermophilum</em> Hsp60 near-atomic model was resolved at 3.46 Å (FSC = 0.143) and shows a hinge-like conformational change of its equatorial domain, highly similar to the one previously shown for its bacterial orthologue, GroEL. This work demonstrates that cryo-EM of cell extracts will greatly accelerate the structural analysis of cellular complexes and provide unprecedented opportunities to annotate architectures of biomolecules in a holistic approach.</p></div>\",\"PeriodicalId\":17238,\"journal\":{\"name\":\"Journal of Structural Biology: X\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10451023/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Biology: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590152423000107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Biology: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590152423000107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Cryo-EM of a heterogeneous biochemical fraction elucidates multiple protein complexes from a multicellular thermophilic eukaryote
Biomolecular complexes and their interactions govern cellular structure and function. Understanding their architecture is a prerequisite for dissecting the cell's inner workings, but their higher-order assembly is often transient and challenging for structural analysis. Here, we performed cryo-EM on a single, highly heterogeneous biochemical fraction derived from Chaetomium thermophilum cell extracts to visualize the biomolecular content of the multicellular eukaryote. After cryo-EM single-particle image processing, results showed that a simultaneous three-dimensional structural characterization of multiple chemically diverse biomacromolecules is feasible. Namely, the thermophilic, eukaryotic complexes of (a) ATP citrate-lyase, (b) Hsp90, (c) 20S proteasome, (d) Hsp60 and (e) UDP-glucose pyrophosphorylase were characterized. In total, all five complexes have been structurally dissected in a thermophilic eukaryote in a total imaged sample area of 190.64 μm2, and two, in particular, 20S proteasome and Hsp60, exhibit side-chain resolution features. The C. thermophilum Hsp60 near-atomic model was resolved at 3.46 Å (FSC = 0.143) and shows a hinge-like conformational change of its equatorial domain, highly similar to the one previously shown for its bacterial orthologue, GroEL. This work demonstrates that cryo-EM of cell extracts will greatly accelerate the structural analysis of cellular complexes and provide unprecedented opportunities to annotate architectures of biomolecules in a holistic approach.