c波段光纤通信系统可实现的信息速率优化。

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Zheng Liu, Tianhua Xu, Ji Qi, Joshua Uduagbomen, Jian Zhao, Tiegen Liu
{"title":"c波段光纤通信系统可实现的信息速率优化。","authors":"Zheng Liu,&nbsp;Tianhua Xu,&nbsp;Ji Qi,&nbsp;Joshua Uduagbomen,&nbsp;Jian Zhao,&nbsp;Tiegen Liu","doi":"10.1007/s12200-023-00072-5","DOIUrl":null,"url":null,"abstract":"<p><p>Optical fiber communication networks play an important role in the global telecommunication network. However, nonlinear effects in the optical fiber and transceiver noise greatly limit the performance of fiber communication systems. In this paper, the product of mutual information (MI) and communication bandwidth is used as the metric of the achievable information rate (AIR). The MI loss caused by the transceiver is also considered in this work, and the bit-wise MI, generalized mutual information (GMI), is used to calculate the AIR. This loss is more significant in the use of higher-order modulation formats. The AIR analysis is carried out in the QPSK, 16QAM, 64QAM and 256QAM modulation formats for the communication systems with different communication bandwidths and transmission distances based on the enhanced Gaussian noise (EGN) model. The paper provides suggestions for the selection of the optimal modulation format in different transmission scenarios.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"16 1","pages":"17"},"PeriodicalIF":4.1000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307731/pdf/","citationCount":"0","resultStr":"{\"title\":\"Achievable information rate optimization in C-band optical fiber communication system.\",\"authors\":\"Zheng Liu,&nbsp;Tianhua Xu,&nbsp;Ji Qi,&nbsp;Joshua Uduagbomen,&nbsp;Jian Zhao,&nbsp;Tiegen Liu\",\"doi\":\"10.1007/s12200-023-00072-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Optical fiber communication networks play an important role in the global telecommunication network. However, nonlinear effects in the optical fiber and transceiver noise greatly limit the performance of fiber communication systems. In this paper, the product of mutual information (MI) and communication bandwidth is used as the metric of the achievable information rate (AIR). The MI loss caused by the transceiver is also considered in this work, and the bit-wise MI, generalized mutual information (GMI), is used to calculate the AIR. This loss is more significant in the use of higher-order modulation formats. The AIR analysis is carried out in the QPSK, 16QAM, 64QAM and 256QAM modulation formats for the communication systems with different communication bandwidths and transmission distances based on the enhanced Gaussian noise (EGN) model. The paper provides suggestions for the selection of the optimal modulation format in different transmission scenarios.</p>\",\"PeriodicalId\":12685,\"journal\":{\"name\":\"Frontiers of Optoelectronics\",\"volume\":\"16 1\",\"pages\":\"17\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10307731/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Optoelectronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12200-023-00072-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-023-00072-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

光纤通信网络在全球电信网络中占有重要地位。然而,光纤中的非线性效应和收发器噪声极大地限制了光纤通信系统的性能。本文采用互信息(MI)与通信带宽的乘积作为可实现信息率(AIR)的度量。本文还考虑了由收发器引起的MI损失,并采用逐位MI,即广义互信息(GMI)来计算AIR。这种损耗在使用高阶调制格式时更为显著。基于增强高斯噪声(EGN)模型,对不同通信带宽和传输距离的通信系统分别在QPSK、16QAM、64QAM和256QAM调制格式下进行了AIR分析。本文对不同传输场景下调制格式的选择提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Achievable information rate optimization in C-band optical fiber communication system.

Achievable information rate optimization in C-band optical fiber communication system.

Achievable information rate optimization in C-band optical fiber communication system.

Achievable information rate optimization in C-band optical fiber communication system.

Optical fiber communication networks play an important role in the global telecommunication network. However, nonlinear effects in the optical fiber and transceiver noise greatly limit the performance of fiber communication systems. In this paper, the product of mutual information (MI) and communication bandwidth is used as the metric of the achievable information rate (AIR). The MI loss caused by the transceiver is also considered in this work, and the bit-wise MI, generalized mutual information (GMI), is used to calculate the AIR. This loss is more significant in the use of higher-order modulation formats. The AIR analysis is carried out in the QPSK, 16QAM, 64QAM and 256QAM modulation formats for the communication systems with different communication bandwidths and transmission distances based on the enhanced Gaussian noise (EGN) model. The paper provides suggestions for the selection of the optimal modulation format in different transmission scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Optoelectronics
Frontiers of Optoelectronics ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
7.80
自引率
0.00%
发文量
583
期刊介绍: Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on. Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics. Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology. ● Presents the latest developments in optoelectronics and optics ● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications ● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信