Zijie Sun, Tianqi Jiang, Zhenyu Wang, Pei Jiang, Yang Yang, Huaqiang Li, Teng Ma, Ji Luo
{"title":"具有能量耦合四稳性的软体机器人手指","authors":"Zijie Sun, Tianqi Jiang, Zhenyu Wang, Pei Jiang, Yang Yang, Huaqiang Li, Teng Ma, Ji Luo","doi":"10.1089/soro.2022.0242","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of the human finger is a significant inspiration for designing soft robotic fingers that can achieve high speed and high force or perform delicate and complex tasks. Existing soft grippers and actuators can be excellent in specific capabilities. However, it is still challenging for them to meet an all-around performance as the human finger, characterized by high actuation speed, wide grasping range, sensing ability, and gentle and high-load grasping capability. The proposed tendon pulley quadrastable (TPQ) finger has combined these qualities in the conducted gripping tasks. A pair of elastic tendons is utilized as the sole energy reservoir to create a novel energy distribution pattern: energy-coupled quadrastability. An energy model is built to analyze and predict the behaviors of the TPQ finger. Mechanical instability is utilized to enhance the actuation speed. The proposed soft lever mechanism endows the TPQ finger with sensing ability. The energy barrier adjusting plates control the energy barrier, adjusting the sensitivity of both active and passive actuation mechanisms. The transition of four stable states forms preplanned trajectories that are applied to create multiple grasping manners. Experiments show that it can respond to stimuli and finish a grasping task in merely 31 ms, and its payload can reach 33.25 kg. At the same time, it can also handle fragile objects such as a piece of rose and grasp a wide range of objects ranging from a thin nut (3.3 mm in height) or a thin card (0.76 mm thick) to a football (220 mm).</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":" ","pages":"140-156"},"PeriodicalIF":6.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft Robotic Finger with Energy-Coupled Quadrastability.\",\"authors\":\"Zijie Sun, Tianqi Jiang, Zhenyu Wang, Pei Jiang, Yang Yang, Huaqiang Li, Teng Ma, Ji Luo\",\"doi\":\"10.1089/soro.2022.0242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The performance of the human finger is a significant inspiration for designing soft robotic fingers that can achieve high speed and high force or perform delicate and complex tasks. Existing soft grippers and actuators can be excellent in specific capabilities. However, it is still challenging for them to meet an all-around performance as the human finger, characterized by high actuation speed, wide grasping range, sensing ability, and gentle and high-load grasping capability. The proposed tendon pulley quadrastable (TPQ) finger has combined these qualities in the conducted gripping tasks. A pair of elastic tendons is utilized as the sole energy reservoir to create a novel energy distribution pattern: energy-coupled quadrastability. An energy model is built to analyze and predict the behaviors of the TPQ finger. Mechanical instability is utilized to enhance the actuation speed. The proposed soft lever mechanism endows the TPQ finger with sensing ability. The energy barrier adjusting plates control the energy barrier, adjusting the sensitivity of both active and passive actuation mechanisms. The transition of four stable states forms preplanned trajectories that are applied to create multiple grasping manners. Experiments show that it can respond to stimuli and finish a grasping task in merely 31 ms, and its payload can reach 33.25 kg. At the same time, it can also handle fragile objects such as a piece of rose and grasp a wide range of objects ranging from a thin nut (3.3 mm in height) or a thin card (0.76 mm thick) to a football (220 mm).</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\" \",\"pages\":\"140-156\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2022.0242\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2022.0242","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Soft Robotic Finger with Energy-Coupled Quadrastability.
The performance of the human finger is a significant inspiration for designing soft robotic fingers that can achieve high speed and high force or perform delicate and complex tasks. Existing soft grippers and actuators can be excellent in specific capabilities. However, it is still challenging for them to meet an all-around performance as the human finger, characterized by high actuation speed, wide grasping range, sensing ability, and gentle and high-load grasping capability. The proposed tendon pulley quadrastable (TPQ) finger has combined these qualities in the conducted gripping tasks. A pair of elastic tendons is utilized as the sole energy reservoir to create a novel energy distribution pattern: energy-coupled quadrastability. An energy model is built to analyze and predict the behaviors of the TPQ finger. Mechanical instability is utilized to enhance the actuation speed. The proposed soft lever mechanism endows the TPQ finger with sensing ability. The energy barrier adjusting plates control the energy barrier, adjusting the sensitivity of both active and passive actuation mechanisms. The transition of four stable states forms preplanned trajectories that are applied to create multiple grasping manners. Experiments show that it can respond to stimuli and finish a grasping task in merely 31 ms, and its payload can reach 33.25 kg. At the same time, it can also handle fragile objects such as a piece of rose and grasp a wide range of objects ranging from a thin nut (3.3 mm in height) or a thin card (0.76 mm thick) to a football (220 mm).
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.