Radwa M Elmorsi, Ahmed M Kabel, Amira A El Saadany, Samia H Abou El-Seoud
{"title":"托吡酯和螺旋藻对阿霉素诱导的大鼠心脏毒性的保护作用。","authors":"Radwa M Elmorsi, Ahmed M Kabel, Amira A El Saadany, Samia H Abou El-Seoud","doi":"10.1177/09603271231198624","DOIUrl":null,"url":null,"abstract":"<p><p>Doxorubicin (DOX) is a widely used chemotherapy drug that can cause significant cardiotoxicity, limiting its clinical application. This study aimed to investigate the potential protective effects of topiramate (TPM) and spirulina (SP), either alone or in combination, in preventing DOX-induced cardiotoxicity. Adult Sprague Dawley rats were divided into five groups, including a normal control group and groups receiving DOX alone, DOX with TPM, DOX with SP, or DOX with a combination of TPM and SP. Cardiotoxicity was induced by administering DOX intraperitoneally at a cumulative dose of 16 mg/kg over 4 weeks. TPM and/or SP administration started 1 week before DOX treatment and continued for 35 days. Body weight, serum markers of cardiac damage, oxidative stress and inflammatory parameters were assessed. Histopathological and immunohistochemical examinations were performed on cardiac tissues. Results showed that TPM and SP monotherapy led to significant improvements in serum levels of cardiac markers, decreased oxidative stress, reduced fibrosis-related growth factor levels, increased antioxidant levels, and improved histopathological features. SP demonstrated more prominent effects in comparison to TPM, and the combination of TPM and SP exhibited even more pronounced effects. In conclusion, TPM and SP, either alone or in combination, hold promise as therapeutic interventions for mitigating DOX-induced cardiotoxicity.</p>","PeriodicalId":13181,"journal":{"name":"Human & Experimental Toxicology","volume":"42 ","pages":"9603271231198624"},"PeriodicalIF":2.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The protective effects of topiramate and spirulina against doxorubicin-induced cardiotoxicity in rats.\",\"authors\":\"Radwa M Elmorsi, Ahmed M Kabel, Amira A El Saadany, Samia H Abou El-Seoud\",\"doi\":\"10.1177/09603271231198624\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doxorubicin (DOX) is a widely used chemotherapy drug that can cause significant cardiotoxicity, limiting its clinical application. This study aimed to investigate the potential protective effects of topiramate (TPM) and spirulina (SP), either alone or in combination, in preventing DOX-induced cardiotoxicity. Adult Sprague Dawley rats were divided into five groups, including a normal control group and groups receiving DOX alone, DOX with TPM, DOX with SP, or DOX with a combination of TPM and SP. Cardiotoxicity was induced by administering DOX intraperitoneally at a cumulative dose of 16 mg/kg over 4 weeks. TPM and/or SP administration started 1 week before DOX treatment and continued for 35 days. Body weight, serum markers of cardiac damage, oxidative stress and inflammatory parameters were assessed. Histopathological and immunohistochemical examinations were performed on cardiac tissues. Results showed that TPM and SP monotherapy led to significant improvements in serum levels of cardiac markers, decreased oxidative stress, reduced fibrosis-related growth factor levels, increased antioxidant levels, and improved histopathological features. SP demonstrated more prominent effects in comparison to TPM, and the combination of TPM and SP exhibited even more pronounced effects. In conclusion, TPM and SP, either alone or in combination, hold promise as therapeutic interventions for mitigating DOX-induced cardiotoxicity.</p>\",\"PeriodicalId\":13181,\"journal\":{\"name\":\"Human & Experimental Toxicology\",\"volume\":\"42 \",\"pages\":\"9603271231198624\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human & Experimental Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09603271231198624\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human & Experimental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09603271231198624","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
The protective effects of topiramate and spirulina against doxorubicin-induced cardiotoxicity in rats.
Doxorubicin (DOX) is a widely used chemotherapy drug that can cause significant cardiotoxicity, limiting its clinical application. This study aimed to investigate the potential protective effects of topiramate (TPM) and spirulina (SP), either alone or in combination, in preventing DOX-induced cardiotoxicity. Adult Sprague Dawley rats were divided into five groups, including a normal control group and groups receiving DOX alone, DOX with TPM, DOX with SP, or DOX with a combination of TPM and SP. Cardiotoxicity was induced by administering DOX intraperitoneally at a cumulative dose of 16 mg/kg over 4 weeks. TPM and/or SP administration started 1 week before DOX treatment and continued for 35 days. Body weight, serum markers of cardiac damage, oxidative stress and inflammatory parameters were assessed. Histopathological and immunohistochemical examinations were performed on cardiac tissues. Results showed that TPM and SP monotherapy led to significant improvements in serum levels of cardiac markers, decreased oxidative stress, reduced fibrosis-related growth factor levels, increased antioxidant levels, and improved histopathological features. SP demonstrated more prominent effects in comparison to TPM, and the combination of TPM and SP exhibited even more pronounced effects. In conclusion, TPM and SP, either alone or in combination, hold promise as therapeutic interventions for mitigating DOX-induced cardiotoxicity.
期刊介绍:
Human and Experimental Toxicology (HET), an international peer reviewed journal, is dedicated to publishing preclinical and clinical original research papers and in-depth reviews that comprehensively cover studies of functional, biochemical and structural disorders in toxicology. The principal aim of the HET is to publish timely high impact hypothesis driven scholarly work with an international scope. The journal publishes on: Structural, functional, biochemical, and molecular effects of toxic agents; Studies that address mechanisms/modes of toxicity; Safety evaluation of novel chemical, biotechnologically-derived products, and nanomaterials for human health assessment including statistical and mechanism-based approaches; Novel methods or approaches to research on animal and human tissues (medical and veterinary patients) investigating functional, biochemical and structural disorder; in vitro techniques, particularly those supporting alternative methods