以人为本研究之潜在变数分析。

Q2 Psychology
Alexander von Eye, Wolfgang Wiedermann, Stefan von Weber
{"title":"以人为本研究之潜在变数分析。","authors":"Alexander von Eye,&nbsp;Wolfgang Wiedermann,&nbsp;Stefan von Weber","doi":"10.17505/jpor.2023.25258","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, we demonstrate that latent variable analysis can be of great use in person-oriented research. Starting with exploratory factor analysis of metric variables, we present an example of the problems that come with generalization of aggregate-level results to subpopulations. Oftentimes, results that are valid for populations do not represent subpopulations at all. This applies to confirmatory factor analysis as well. When variables are categorical, latent class analysis can be used to create latent variables that explain the covariation of observed variables. In an example, we demonstrate that latent class analysis can be applied to data from individuals, when the number of observation points is sufficiently large. In each case of latent variables analysis, the latent variables can be considered moderators of the structure of covariation among observed variables.</p>","PeriodicalId":36744,"journal":{"name":"Journal for Person-Oriented Research","volume":"9 1","pages":"17-28"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302653/pdf/","citationCount":"0","resultStr":"{\"title\":\"Latent Variables Analysis in Person-Oriented Research.\",\"authors\":\"Alexander von Eye,&nbsp;Wolfgang Wiedermann,&nbsp;Stefan von Weber\",\"doi\":\"10.17505/jpor.2023.25258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this article, we demonstrate that latent variable analysis can be of great use in person-oriented research. Starting with exploratory factor analysis of metric variables, we present an example of the problems that come with generalization of aggregate-level results to subpopulations. Oftentimes, results that are valid for populations do not represent subpopulations at all. This applies to confirmatory factor analysis as well. When variables are categorical, latent class analysis can be used to create latent variables that explain the covariation of observed variables. In an example, we demonstrate that latent class analysis can be applied to data from individuals, when the number of observation points is sufficiently large. In each case of latent variables analysis, the latent variables can be considered moderators of the structure of covariation among observed variables.</p>\",\"PeriodicalId\":36744,\"journal\":{\"name\":\"Journal for Person-Oriented Research\",\"volume\":\"9 1\",\"pages\":\"17-28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10302653/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal for Person-Oriented Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17505/jpor.2023.25258\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Psychology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal for Person-Oriented Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17505/jpor.2023.25258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Psychology","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了潜在变量分析在以人为本的研究中有很大的用处。从度量变量的探索性因子分析开始,我们提出了一个将总体水平结果推广到子种群的问题示例。通常,对总体有效的结果根本不能代表亚总体。这也适用于验证性因子分析。当变量是分类的,潜类分析可以用来创建潜变量来解释观察到的变量的协变。在一个例子中,我们证明了当观察点的数量足够大时,潜在类分析可以应用于来自个体的数据。在潜变量分析的每种情况下,潜变量可以被认为是观察变量之间协变结构的调节因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Latent Variables Analysis in Person-Oriented Research.

Latent Variables Analysis in Person-Oriented Research.

Latent Variables Analysis in Person-Oriented Research.

Latent Variables Analysis in Person-Oriented Research.

In this article, we demonstrate that latent variable analysis can be of great use in person-oriented research. Starting with exploratory factor analysis of metric variables, we present an example of the problems that come with generalization of aggregate-level results to subpopulations. Oftentimes, results that are valid for populations do not represent subpopulations at all. This applies to confirmatory factor analysis as well. When variables are categorical, latent class analysis can be used to create latent variables that explain the covariation of observed variables. In an example, we demonstrate that latent class analysis can be applied to data from individuals, when the number of observation points is sufficiently large. In each case of latent variables analysis, the latent variables can be considered moderators of the structure of covariation among observed variables.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal for Person-Oriented Research
Journal for Person-Oriented Research Psychology-Psychology (miscellaneous)
CiteScore
2.90
自引率
0.00%
发文量
9
审稿时长
23 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信