K Togami, X Zhan, K Ishizawa, K Miyakoshi, A Miyao, P Quan, S Chono
{"title":"LOX-1抗体修饰免疫脂质体作为动脉粥样硬化病变巨噬细胞药物载体的研究进展。","authors":"K Togami, X Zhan, K Ishizawa, K Miyakoshi, A Miyao, P Quan, S Chono","doi":"10.1691/ph.2023.3004","DOIUrl":null,"url":null,"abstract":"<p><p>We developed a drug delivery system for atherosclerotic lesions using immuno-liposomes. We focused on enhancing the delivery efficiency of the liposomes to macrophages in atherosclerotic lesions by antibody modification of lectinlike oxidized low-density lipoproteins (LDL) receptor 1 (LOX-1). The cellular accumulation of the liposomes in foam cells induced by oxidized LDL (oxLDL) in Raw264 mouse macrophages was evaluated. The cellular accumulation of LOX-1 antibody modified liposomes in oxLDL-induced foam cells and untreated Raw264 cells was significantly higher compared with that of unmodified liposomes. The liposomes were also administered intravenously to <i>Apoe</i><sup>shl</sup> mice as an atherosclerosis model. Frozen sections were prepared from the mouse aortas and observed by confocal laser microscopy. The distribution of LOX-1 antibody modified liposomes in the atherosclerotic regions of <i>Apoe</i><sup>shl</sup> mice was significantly greater compared with that of unmodified liposomes. The results suggest that LOX-1 antibody modified liposomes can target foam cells in atherosclerotic lesions, providing a potential route for delivering various drugs with pharmacological effects or detecting atherosclerotic foci for the diagnosis of atherosclerosis.</p>","PeriodicalId":20145,"journal":{"name":"Pharmazie","volume":"78 8","pages":"113-116"},"PeriodicalIF":1.5000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of LOX-1 Antibody Modified Immuno-liposomes as Drug Carriers to Macrophages in Atherosclerotic Lesions.\",\"authors\":\"K Togami, X Zhan, K Ishizawa, K Miyakoshi, A Miyao, P Quan, S Chono\",\"doi\":\"10.1691/ph.2023.3004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We developed a drug delivery system for atherosclerotic lesions using immuno-liposomes. We focused on enhancing the delivery efficiency of the liposomes to macrophages in atherosclerotic lesions by antibody modification of lectinlike oxidized low-density lipoproteins (LDL) receptor 1 (LOX-1). The cellular accumulation of the liposomes in foam cells induced by oxidized LDL (oxLDL) in Raw264 mouse macrophages was evaluated. The cellular accumulation of LOX-1 antibody modified liposomes in oxLDL-induced foam cells and untreated Raw264 cells was significantly higher compared with that of unmodified liposomes. The liposomes were also administered intravenously to <i>Apoe</i><sup>shl</sup> mice as an atherosclerosis model. Frozen sections were prepared from the mouse aortas and observed by confocal laser microscopy. The distribution of LOX-1 antibody modified liposomes in the atherosclerotic regions of <i>Apoe</i><sup>shl</sup> mice was significantly greater compared with that of unmodified liposomes. The results suggest that LOX-1 antibody modified liposomes can target foam cells in atherosclerotic lesions, providing a potential route for delivering various drugs with pharmacological effects or detecting atherosclerotic foci for the diagnosis of atherosclerosis.</p>\",\"PeriodicalId\":20145,\"journal\":{\"name\":\"Pharmazie\",\"volume\":\"78 8\",\"pages\":\"113-116\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmazie\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1691/ph.2023.3004\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1691/ph.2023.3004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Development of LOX-1 Antibody Modified Immuno-liposomes as Drug Carriers to Macrophages in Atherosclerotic Lesions.
We developed a drug delivery system for atherosclerotic lesions using immuno-liposomes. We focused on enhancing the delivery efficiency of the liposomes to macrophages in atherosclerotic lesions by antibody modification of lectinlike oxidized low-density lipoproteins (LDL) receptor 1 (LOX-1). The cellular accumulation of the liposomes in foam cells induced by oxidized LDL (oxLDL) in Raw264 mouse macrophages was evaluated. The cellular accumulation of LOX-1 antibody modified liposomes in oxLDL-induced foam cells and untreated Raw264 cells was significantly higher compared with that of unmodified liposomes. The liposomes were also administered intravenously to Apoeshl mice as an atherosclerosis model. Frozen sections were prepared from the mouse aortas and observed by confocal laser microscopy. The distribution of LOX-1 antibody modified liposomes in the atherosclerotic regions of Apoeshl mice was significantly greater compared with that of unmodified liposomes. The results suggest that LOX-1 antibody modified liposomes can target foam cells in atherosclerotic lesions, providing a potential route for delivering various drugs with pharmacological effects or detecting atherosclerotic foci for the diagnosis of atherosclerosis.
期刊介绍:
The journal DiePharmazie publishs reviews, experimental studies, letters to the editor, as well as book reviews.
The following fields of pharmacy are covered:
Pharmaceutical and medicinal chemistry;
Pharmaceutical analysis and drug control;
Pharmaceutical technolgy;
Biopharmacy (biopharmaceutics, pharmacokinetics, biotransformation);
Experimental and clinical pharmacology;
Pharmaceutical biology (pharmacognosy);
Clinical pharmacy;
History of pharmacy.