{"title":"一种快速高效地消化人血清中CD44蛋白的新装置","authors":"Chandrababu Rejeeth , Nipun Babu Varukattu , Raju Suresh Kumar , Abdulrahman I. Almansour , Natarajan Arumugam","doi":"10.1016/j.jchromb.2023.123840","DOIUrl":null,"url":null,"abstract":"<div><p>For molecular diagnostics in modern biomedical research, electrospray ionisation mass spectrometry (ESI-MS) based on proteome profiling is important. Now a days, sample preparation such as proteolysis and protein extraction remain incredibly challenging and inefficient. Recent sample-preparation methods based on micro tips show promising results toward the aim “a proteome in an hour”. Proteolysis at the tip, is still infrequently observed and does not represent the processing of complex bio-samples. In this study, we outline a unique technique for detecting and extracting human serum CD44 biomarkers by ligand–protein interactions. This method employs macropores silica particles (MPSP) or (MOSF) modified with hyaluronic acid (HA). In order to assist in the profile of the human serum proteome, we limitations of immunoassays for rapid and multimodal proteolysis. For effective in situ proteolysis, in micropipette tips, MPSP were designed as nanoreactors with variable pore size and surface chemistry. In MS-based bottom-up proteome analysis, the device as-built demonstrated favourable sensitivity (LOD of 0.304 ± 0.007 ng/mL and LOQ of 0.973 ± 0.054 ng/mL), selectivity, durability (at −20 °C for 2 months), reuse (at least 10 times), and minimal memory impact. In addition, we examined into specific surface chemistries of nanoparticles for the absorption of proteins in serum and profiled the HA-binding serum proteome, setting a new preliminary benchmark for future databases. Our study not only helped establish a new platform for extracting/detection of CD44 and identifying the HA-binding proteome, but it also offered design recommendations for ligand affinity-based techniques for the antibody-free study of serum biomarkers with a view towards diagnostic applications.</p></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1227 ","pages":"Article 123840"},"PeriodicalIF":2.8000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel device for swift and efficient CD44 protein digestion of pipette tips in human serum\",\"authors\":\"Chandrababu Rejeeth , Nipun Babu Varukattu , Raju Suresh Kumar , Abdulrahman I. Almansour , Natarajan Arumugam\",\"doi\":\"10.1016/j.jchromb.2023.123840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For molecular diagnostics in modern biomedical research, electrospray ionisation mass spectrometry (ESI-MS) based on proteome profiling is important. Now a days, sample preparation such as proteolysis and protein extraction remain incredibly challenging and inefficient. Recent sample-preparation methods based on micro tips show promising results toward the aim “a proteome in an hour”. Proteolysis at the tip, is still infrequently observed and does not represent the processing of complex bio-samples. In this study, we outline a unique technique for detecting and extracting human serum CD44 biomarkers by ligand–protein interactions. This method employs macropores silica particles (MPSP) or (MOSF) modified with hyaluronic acid (HA). In order to assist in the profile of the human serum proteome, we limitations of immunoassays for rapid and multimodal proteolysis. For effective in situ proteolysis, in micropipette tips, MPSP were designed as nanoreactors with variable pore size and surface chemistry. In MS-based bottom-up proteome analysis, the device as-built demonstrated favourable sensitivity (LOD of 0.304 ± 0.007 ng/mL and LOQ of 0.973 ± 0.054 ng/mL), selectivity, durability (at −20 °C for 2 months), reuse (at least 10 times), and minimal memory impact. In addition, we examined into specific surface chemistries of nanoparticles for the absorption of proteins in serum and profiled the HA-binding serum proteome, setting a new preliminary benchmark for future databases. Our study not only helped establish a new platform for extracting/detection of CD44 and identifying the HA-binding proteome, but it also offered design recommendations for ligand affinity-based techniques for the antibody-free study of serum biomarkers with a view towards diagnostic applications.</p></div>\",\"PeriodicalId\":348,\"journal\":{\"name\":\"Journal of Chromatography B\",\"volume\":\"1227 \",\"pages\":\"Article 123840\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chromatography B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570023223002507\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023223002507","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A novel device for swift and efficient CD44 protein digestion of pipette tips in human serum
For molecular diagnostics in modern biomedical research, electrospray ionisation mass spectrometry (ESI-MS) based on proteome profiling is important. Now a days, sample preparation such as proteolysis and protein extraction remain incredibly challenging and inefficient. Recent sample-preparation methods based on micro tips show promising results toward the aim “a proteome in an hour”. Proteolysis at the tip, is still infrequently observed and does not represent the processing of complex bio-samples. In this study, we outline a unique technique for detecting and extracting human serum CD44 biomarkers by ligand–protein interactions. This method employs macropores silica particles (MPSP) or (MOSF) modified with hyaluronic acid (HA). In order to assist in the profile of the human serum proteome, we limitations of immunoassays for rapid and multimodal proteolysis. For effective in situ proteolysis, in micropipette tips, MPSP were designed as nanoreactors with variable pore size and surface chemistry. In MS-based bottom-up proteome analysis, the device as-built demonstrated favourable sensitivity (LOD of 0.304 ± 0.007 ng/mL and LOQ of 0.973 ± 0.054 ng/mL), selectivity, durability (at −20 °C for 2 months), reuse (at least 10 times), and minimal memory impact. In addition, we examined into specific surface chemistries of nanoparticles for the absorption of proteins in serum and profiled the HA-binding serum proteome, setting a new preliminary benchmark for future databases. Our study not only helped establish a new platform for extracting/detection of CD44 and identifying the HA-binding proteome, but it also offered design recommendations for ligand affinity-based techniques for the antibody-free study of serum biomarkers with a view towards diagnostic applications.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.