激光增材制造在线检测技术的进展:综述。

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING
3D Printing and Additive Manufacturing Pub Date : 2023-06-01 Epub Date: 2023-06-08 DOI:10.1089/3dp.2021.0049
Rui Li Zu, Dong Liang Wu, Jiang Fan Zhou, Zhan Wei Liu, Hui Min Xie, Sheng Liu
{"title":"激光增材制造在线检测技术的进展:综述。","authors":"Rui Li Zu, Dong Liang Wu, Jiang Fan Zhou, Zhan Wei Liu, Hui Min Xie, Sheng Liu","doi":"10.1089/3dp.2021.0049","DOIUrl":null,"url":null,"abstract":"<p><p>In additive manufacturing (AM), the mechanical properties of manufactured parts are often insufficient due to complex defects and residual stresses, limiting their use in high-value or mission-critical applications. Therefore, the research and application of nondestructive testing (NDT) technologies to identify defects in AM are becoming increasingly urgent. This article reviews the recent progress in online detection technologies in AM, a special introduction to the high-speed synchrotron X-ray technology for real-time <i>in situ</i> observation, and analysis of defect formation processes in the past 5 years, and also discusses the latest research efforts involving process monitoring and feedback control algorithms. The formation mechanism of different defects and the influence of process parameters on defect formation, important parameters such as defect spatial resolution, detection speed, and scope of application of common NDT methods, and the defect types, advantages, and disadvantages associated with current online detection methods for monitoring three-dimensional printing processes are summarized. In response to the development requirements of AM technology, the most promising trends in online detection are also prospected. This review aims to serve as a reference and guidance for the work to identify/select the most suitable measurement methods and corresponding control strategy for online detection.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 3","pages":"467-489"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280211/pdf/","citationCount":"0","resultStr":"{\"title\":\"Advances in Online Detection Technology for Laser Additive Manufacturing: A Review.\",\"authors\":\"Rui Li Zu, Dong Liang Wu, Jiang Fan Zhou, Zhan Wei Liu, Hui Min Xie, Sheng Liu\",\"doi\":\"10.1089/3dp.2021.0049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In additive manufacturing (AM), the mechanical properties of manufactured parts are often insufficient due to complex defects and residual stresses, limiting their use in high-value or mission-critical applications. Therefore, the research and application of nondestructive testing (NDT) technologies to identify defects in AM are becoming increasingly urgent. This article reviews the recent progress in online detection technologies in AM, a special introduction to the high-speed synchrotron X-ray technology for real-time <i>in situ</i> observation, and analysis of defect formation processes in the past 5 years, and also discusses the latest research efforts involving process monitoring and feedback control algorithms. The formation mechanism of different defects and the influence of process parameters on defect formation, important parameters such as defect spatial resolution, detection speed, and scope of application of common NDT methods, and the defect types, advantages, and disadvantages associated with current online detection methods for monitoring three-dimensional printing processes are summarized. In response to the development requirements of AM technology, the most promising trends in online detection are also prospected. This review aims to serve as a reference and guidance for the work to identify/select the most suitable measurement methods and corresponding control strategy for online detection.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":\"10 3\",\"pages\":\"467-489\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10280211/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2021.0049\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/8 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

在增材制造(AM)过程中,由于存在复杂的缺陷和残余应力,制造零件的机械性能往往不足,从而限制了其在高价值或关键任务应用中的使用。因此,研究和应用无损检测(NDT)技术来识别 AM 中的缺陷变得日益迫切。本文回顾了近 5 年来在 AM 在线检测技术方面取得的最新进展,特别介绍了用于实时原位观测和分析缺陷形成过程的高速同步辐射 X 射线技术,并讨论了涉及过程监控和反馈控制算法的最新研究成果。总结了不同缺陷的形成机理和工艺参数对缺陷形成的影响,常见无损检测方法的缺陷空间分辨率、检测速度和适用范围等重要参数,以及当前在线检测方法用于监测三维打印工艺的相关缺陷类型、优缺点。针对 AM 技术的发展要求,还展望了最有前景的在线检测趋势。本综述旨在为确定/选择最适合在线检测的测量方法和相应控制策略的工作提供参考和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advances in Online Detection Technology for Laser Additive Manufacturing: A Review.

In additive manufacturing (AM), the mechanical properties of manufactured parts are often insufficient due to complex defects and residual stresses, limiting their use in high-value or mission-critical applications. Therefore, the research and application of nondestructive testing (NDT) technologies to identify defects in AM are becoming increasingly urgent. This article reviews the recent progress in online detection technologies in AM, a special introduction to the high-speed synchrotron X-ray technology for real-time in situ observation, and analysis of defect formation processes in the past 5 years, and also discusses the latest research efforts involving process monitoring and feedback control algorithms. The formation mechanism of different defects and the influence of process parameters on defect formation, important parameters such as defect spatial resolution, detection speed, and scope of application of common NDT methods, and the defect types, advantages, and disadvantages associated with current online detection methods for monitoring three-dimensional printing processes are summarized. In response to the development requirements of AM technology, the most promising trends in online detection are also prospected. This review aims to serve as a reference and guidance for the work to identify/select the most suitable measurement methods and corresponding control strategy for online detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信