Fabiana C Dias, Zilong Wang, Garrett Scapellato, Yong Chen
{"title":"沉默表达trpv4的感觉神经元可减轻颞下颌疾病的疼痛。","authors":"Fabiana C Dias, Zilong Wang, Garrett Scapellato, Yong Chen","doi":"10.1177/17448069231185696","DOIUrl":null,"url":null,"abstract":"<p><p>Identification of potential therapeutic targets is needed for temporomandibular disorders (TMD) pain, the most common form of orofacial pain, because current treatments lack efficacy. Considering TMD pain is critically mediated by the trigeminal ganglion (TG) sensory neurons, functional blockade of nociceptive neurons in the TG may provide an effective approach for mitigating pain associated with TMD. We have previously shown that TRPV4, a polymodally-activated ion channel, is expressed in TG nociceptive neurons. Yet, it remains unexplored whether functional silencing of TRPV4-expressing TG neurons attenuates TMD pain. In this study, we demonstrated that co-application of a positively charged, membrane-impermeable lidocaine derivative QX-314 with the TRPV4 selective agonist GSK101 suppressed the excitability of TG neurons. Moreover, co-administration of QX-314 and GSK101 into the TG significantly attenuated pain in mouse models of temporomandibular joint (TMJ) inflammation and masseter muscle injury. Collectively, these results suggest TRPV4-expressing TG neurons represent a potential target for TMD pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5e/d3/10.1177_17448069231185696.PMC10288408.pdf","citationCount":"0","resultStr":"{\"title\":\"Silencing of TRPV4-expressing sensory neurons attenuates temporomandibular disorders pain.\",\"authors\":\"Fabiana C Dias, Zilong Wang, Garrett Scapellato, Yong Chen\",\"doi\":\"10.1177/17448069231185696\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Identification of potential therapeutic targets is needed for temporomandibular disorders (TMD) pain, the most common form of orofacial pain, because current treatments lack efficacy. Considering TMD pain is critically mediated by the trigeminal ganglion (TG) sensory neurons, functional blockade of nociceptive neurons in the TG may provide an effective approach for mitigating pain associated with TMD. We have previously shown that TRPV4, a polymodally-activated ion channel, is expressed in TG nociceptive neurons. Yet, it remains unexplored whether functional silencing of TRPV4-expressing TG neurons attenuates TMD pain. In this study, we demonstrated that co-application of a positively charged, membrane-impermeable lidocaine derivative QX-314 with the TRPV4 selective agonist GSK101 suppressed the excitability of TG neurons. Moreover, co-administration of QX-314 and GSK101 into the TG significantly attenuated pain in mouse models of temporomandibular joint (TMJ) inflammation and masseter muscle injury. Collectively, these results suggest TRPV4-expressing TG neurons represent a potential target for TMD pain.</p>\",\"PeriodicalId\":19010,\"journal\":{\"name\":\"Molecular Pain\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/5e/d3/10.1177_17448069231185696.PMC10288408.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17448069231185696\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069231185696","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Silencing of TRPV4-expressing sensory neurons attenuates temporomandibular disorders pain.
Identification of potential therapeutic targets is needed for temporomandibular disorders (TMD) pain, the most common form of orofacial pain, because current treatments lack efficacy. Considering TMD pain is critically mediated by the trigeminal ganglion (TG) sensory neurons, functional blockade of nociceptive neurons in the TG may provide an effective approach for mitigating pain associated with TMD. We have previously shown that TRPV4, a polymodally-activated ion channel, is expressed in TG nociceptive neurons. Yet, it remains unexplored whether functional silencing of TRPV4-expressing TG neurons attenuates TMD pain. In this study, we demonstrated that co-application of a positively charged, membrane-impermeable lidocaine derivative QX-314 with the TRPV4 selective agonist GSK101 suppressed the excitability of TG neurons. Moreover, co-administration of QX-314 and GSK101 into the TG significantly attenuated pain in mouse models of temporomandibular joint (TMJ) inflammation and masseter muscle injury. Collectively, these results suggest TRPV4-expressing TG neurons represent a potential target for TMD pain.
期刊介绍:
Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.